天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 農(nóng)業(yè)論文 > 園藝論文 >

高溫抑制菊花腋芽生長的機(jī)制研究

發(fā)布時(shí)間:2021-03-31 08:30
  切花菊是我國主要切花和優(yōu)勢出口花卉之一,’神馬’是目前主栽的單頭切花菊品種,然而,’神馬’品種側(cè)芽發(fā)生嚴(yán)重,為控制側(cè)芽發(fā)育而獲得只有頂芽主花蕾發(fā)育的單頭切花菊,生產(chǎn)上采取人工來摘除側(cè)芽側(cè)蕾,一方面極大的增加了勞動(dòng)力成本,另一方面如果摘除不及時(shí)或不恰當(dāng)?shù)牟僮鬟會(huì)影響切花質(zhì)量,制約著切花菊的高效生產(chǎn),因此,亟待開發(fā)有效的分枝調(diào)控技術(shù)、培育無側(cè)枝切花菊新品種,而解析菊花側(cè)枝生長發(fā)育調(diào)控機(jī)制是開展這些工作的基礎(chǔ)。已有研究表明,溫度是影響植物分枝的一個(gè)重要環(huán)境因素,然而,高溫如何影響植物分枝及其詳細(xì)機(jī)制并不清楚;诖,本研究以單頭切花菊’神馬’為研究材料,探討了高溫(35℃)對(duì)’神馬’全株不同部位腋芽生長的影響及其生理生化水平變化規(guī)律,借助轉(zhuǎn)錄組測序技術(shù)采用基因共表達(dá)網(wǎng)絡(luò)分析策略挖掘了與腋芽生長性狀相關(guān)的核心基因模塊,最終從表型、生理生化及基因表達(dá)水平解析了高溫(35℃)對(duì)菊花’神馬’腋芽生長發(fā)育的影響機(jī)制,取得以下主要研究結(jié)果:1.高溫抑制菊花腋芽生長。在高溫處理?xiàng)l件下,上部腋芽并不萌發(fā)釋放,基部腋芽生長也受到顯著抑制(高溫處理11d基部腋芽長度為0.3687 mm,對(duì)照為3.5387 mm... 

【文章來源】:北京林業(yè)大學(xué)北京市 211工程院校 教育部直屬院校

【文章頁數(shù)】:137 頁

【學(xué)位級(jí)別】:博士

【文章目錄】:
摘要
ABSTRACT
1. Introduction
    1.1. Background and significance
    1.2. Research status and analysis
2. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novelmolecular signatures associated with axillary bud outgrowth in Chrysanthemum morifolium 'Jinba'
    2.1. Abstract
    2.2. Introduction
    2.3. Material and methods
        2.3.1. Plant material and growth conditions
        2.3.2. Sampling procedure
        2.3.3. Morphological Parameters
        2.3.4. Gas exchange and photosynthetic pigments
        2.3.5. Physiological indices
        2.3.6. Stomatal Density
        2.3.7. Microscopic documentation of axillary buds under different temperature regimes Paraffin sectioning
        2.3.8. Transmission electron microscopy
        2.3.9. Measurement of Sucrose concentration
        2.3.10. RNA-seq library preparation and sequencing
        2.3.11. Gene ontology and pathway enrichment analysis
        2.3.12. Weighted genes coexpression network analysis
    2.4. Results
        2.4.1. Morphological indicators of high temperature
        2.4.2 Temperature indirectly affects bud kinetics via leaf
        2.4.3. Gas exchange and photosynthetic pigments
        2.4.4. Physiological responses of leaf against temperature
        2.4.5. Ultra-structural leaf and bud attributes as influenced by temperature variation
        2.4.6. Temperature causes differential bud outgrowth and sugar distribution along bud positions
        2.4.7. Transcriptome analysis of buds at different positions
        2.4.8. Transcriptomic comparison revealed dynamic relationships among bud stages
        2.4.9. Differential gene expression during bud outgrowth
        2.4.10. Differentially expressed gene sets between 25 oC and 35 oC at different bud positions
        2.4.11. Hormonal networks are also involved in temperature sensing for bud kinetics
        2.4.12. Identification of coexpressed gene modules for selected morphological leaf and bud traits
        2.4.13. qRT-PCR of candidate hormonal and molecular regulators of bud outgrowth supports the transcriptomic analysis.
    2.5. Discussion
3. Tertiary axillary buds in secondary decapitation do clearly mind the change in temperature
    3.1. Abstract
    3.2. Introduction
    3.3. Materials and Methods
        3.3.1. Plant material and growth conditions
        3.3.2. Experimental Plan
        3.3.3. Microscopic documentation of axillary buds under different temperature regimes
    3.4. Results
        3.4.1. Suitably normal temperature gives more axillary bud outgrowth
        3.4.2. High temperature positively regulates DgBRCl and CmDRMl expression
        3.4.3. Elevated temperature promotes auxin transport gene DgPIN1 expression and suppresses auxinsignalling gene CmAXR1 expression
        3.4.4. Normal temperature promotes cytokinin synthesis gene DgIPT3 expression in buds
        3.4.5. Increase in temperature promotes strigolactone biosynthesis and signalling
        3.4.6. ABA signaling in buds was stimulated by high temperature
        3.4.7. Temperature plays a complex role in sucrose transport and accumulation in the axillary buds
        3.4.8. Temperature differences modify leaf and bud characteristics for secondary shoots
    3.5. Discussion
        3.5.1. Temperature makes a complex sucrose homeostasis
        3.5.2. High temperature excites branching inhibitors
        3.5.3. Temperature makes a way to arrest bud burst through hormonal network
    3.6. Conclusions
4. Sucrose modulates bud outgrowth status by integrating with key hormonal regulatory network inChrysanthemum morifolium 'Jinba'
    4.1. Abstract
    4.2. Introduction
    4.3. Materials and Methods
        4.3.1. Plant material and growth conditions
        4.3.2. Physiological indices
        4.3.3. Microscopic documentation of axillary buds under the three sucrose levels
        4.3.4.    The split-plate experiment
        4.3.5. Quantification of gene expression
        4.3.6. Cytokinin content analysis
    4.4. Results
        4.4.1. Suitable sucrose concentrations promote bud outgrowth
        4.4.2. Relative sucrose concentrations behave differently in bud control
        4.4.3. Strange morphological appearances of axillary buds in plants under higher sucrose concentrations
        4.4.4. Higher sucrose concentrations trigger abnormal growth patterns of buds
        4.4.5. Sucrose influences the leaf shape and color
        4.4.6. Design of RNA-seq experiments and transcriptomic changes induced by sucrose
        4.4.7. Weighted co-expression network construction and key modules identification
        4.4.8. Sucrose negatively regulates DgBRC1 and CmDRM1 expression
        4.4.9. Sucrose promotes auxin transport gene DgPIN1 expression and suppresses auxin signalling geneCmAXR1 expression
        4.4.10. Sucrose promotes cytokinin synthesis gene DgIPT3 expression in buds
        4.4.11. Sucrose promotes strigolactone biosynthesis gene expression and suppresses strigolactone signallinggene DgMAX2expression
        4.4.12. ABA signaling in buds was repressed by sucrose treatment
        4.4.13. Sucrose promotes Cytokinin accumulation in the bud
    4.5. Discussion
        4.5.1. Sucrose regulates bud growth status
        4.5.2. Sucrose integrates with key hormonal mechanism to regulate bud release and outgrowth
    4.6. Conclusions
5. Conclusions and perspective
6. The characteristics and innovations of the research
References
Personal CV
導(dǎo)師簡介
Achievements
Acknowledgement


【參考文獻(xiàn)】:
期刊論文
[1]Current perspectives on shoot branching regulation[J]. Cunquan YUAN,Lin XI,Yaping KOU,Yu ZHAO,Liangjun ZHAO.  Frontiers of Agricultural Science and Engineering. 2015(01)



本文編號(hào):3111131

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/nykjlw/yylw/3111131.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4b7fd***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com