干露和產(chǎn)卵過(guò)程中皺紋盤(pán)鮑的耐受性和免疫應(yīng)答研究
發(fā)布時(shí)間:2021-01-12 01:28
皺紋盤(pán)鮑在中國(guó)是一種重要的海水養(yǎng)殖經(jīng)濟(jì)物種,國(guó)內(nèi)市場(chǎng)需求量大。但是,活體鮑魚(yú)的運(yùn)輸仍有諸多瓶頸,通常是采用密閉的保溫箱,但因運(yùn)輸時(shí)間較長(zhǎng),會(huì)對(duì)鮑魚(yú)產(chǎn)生一定的脅迫應(yīng)激,導(dǎo)致運(yùn)輸過(guò)程中肉質(zhì)的改變甚至死亡。因此,本研究通過(guò)評(píng)估鮑在不同條件下的存活率和體重?fù)p失率(WLR),從而確定鮑活體運(yùn)輸?shù)淖罴褩l件。模擬鮑活體運(yùn)輸?shù)膮?shù)有溫度、濕度和氧氣等。研究結(jié)果表明,在經(jīng)過(guò)冷水刺激后,一定濕度環(huán)境下鮑的存活率顯著升高,而氧氣供給對(duì)鮑魚(yú)存活率無(wú)顯著影響。另外,隨著干露時(shí)間的增加WLR顯著升高。通過(guò)檢測(cè)不同干露時(shí)間(2,6,12,24和30 h)和不同干露溫度(5,10,20和28℃)下的總血細(xì)胞數(shù)(THC)、血細(xì)胞死亡率和活性氧自由基(ROS),可用于評(píng)估干露對(duì)鮑脅迫響應(yīng)的影響。研究結(jié)果表明,在5℃和10℃下干露30 h,THC顯著降低;在20 ℃下干露24 h,THC顯著降低。在5℃和10℃下,血細(xì)胞死亡率和ROS逐漸升高,干露30 h后均達(dá)到最高值;經(jīng)過(guò)24 h恢復(fù)實(shí)驗(yàn)后,血細(xì)胞死亡率和ROS有所降低,但仍然顯著高于對(duì)照組。因此,這些參數(shù)可以作為鮑活體運(yùn)輸對(duì)功能性免疫相應(yīng)和生理脅迫影響的指標(biāo)。另外,對(duì)...
【文章來(lái)源】:廈門(mén)大學(xué)福建省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:120 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
摘要
CHAPTER 1. GENERAL INTRODUCTION
1.1. Biological overview of Pacific abalone
1.1.1. General characteristics, habitat and distribution
1.1.2. The circulation system and immunology system
1.1.2.1. Blood circulation
1.1.2.2. Blood chemistry baseline values
1.1.2.3. Immunology system
1.1.3. Respiration system
1.1.3.1. Aerobic respiration and anaerobic respiration
1.1.4. Reproductive system
1.2. Status abalone in China
1.2.1. China's abalone market and transportation
1.2.2. The effects of transport stress
Defining stress
The research purpose
CHAPTER 2. PHYSIOLOGICAL ASSESSMENT OF LIVE PACIFICABALONEIN DIFFERENT TRANSPORT PACKAGING
2.1. Introduction
2.2. Methodologies
2.2.1. Animals sample
2.2.2. Equipment
2.2.3. Experimental design
2.2.4. Statistical analysis
2.3. Results
2.3.1. Survival rate
2.3.2. Weight loss rate
2.4. Discussion
2.4.1. Survival rate
2.4.2. Weight loss rate
CHAPTER 3. HPLC FOR DETERMINATION ORGANIC ACIDS INANAEROBIC RESPIRATION IN PACIFIC ABALONE HEMOLYMPHDURING AIR EXPOSURE TRANSPORT
3.1. Introduction
3.2. Methodologies
3.2.1. Animals sample
3.2.2. Chemical reagents
3.2.3. Equipment
3.2.4. Experimental design
3.2.5. Methods
3.2.6. Data analysis
3.3. Results
3.3.1. Blood pyruvate and blood lactate in H. discus hannai hemolymph
3.4. Discussion
CHAPTER 4. IMPACTS OF AIR EXPOSURE ON THE IMMUNERESPONSE IN HALIOTIS DISCUS HANNAI DURING SIMULATEDLIVE TRANSPORT
4.1. Introduction
4.2. Methodologies
4.2.1. Animals sample
4.2.2. Chemical reagents
4.2.3. Equipment
4.2.4. Methods
4.2.4.1. Light microscope
4.2.4.2. Total hemocyte count (THC)
4.2.4.3. Haemocyte Mortality
4.2.4.4. Reactive oxygen species (ROS)
4.3. Results
4.3.1. Light microscopy
4.3.2. Total hemocytes count (THC)
4.3.3. Haemocyte mortality
4.3.4. Reactive oxygen species (ROS)
4.4. Discussion
4.4.1. Light microscope
4.4.2. Immune response
CHAPTER 5. MORPHOLOGICAL CHANGES IN GONADS ANDTHE IMMUNE REPONSE OF HALIOTIS DISCUS HANNAI DURINGSPAWNING PERIOD
Part 5.1. Gonad morphological
5.1.1. Introduction
5.1.2. Methodologies
5.1.2.1 Animals sample
5.1.2.2. Chemical reagents
5.1.2.3. Equipment
5.1.3. Results
Part 5.2. Effects of immune response during spawning period
5.2.1. Methodologies
5.2.1.1. Animals sample
5.2.1.2. Chemical reagents
5.2.1.3. Equipment
5.2.1.4. Methods
5.2.1.4.1. Total hemocyte count(THC)
5.2.1.4.2. Hemocyte Mortality
5.2.1.4.3. Reactive oxygen species
5.2.1.5. Statistical analyses
5.2.2. Results
5.2.2.1. Total hemocytes count
5.2.2.2. Hemocyte Mortality
5.2.2.3. Reactive oxygen species
5.2.3. Discussion
5.2.3.1. Morphological changes in gonads
5.2.3.2. Immune response
CHAPTER 6. SUMMARY AND FUTURE RESEARCH
6.1. Summary
6.2. Future research
References
Appendix 1. Changes in muscle of H. discus hannai after exposure to airimmediately from 20 to 5 ℃ for live transport simulation
Appendix 2. Changes in muscle of H. discus hannai after exposure to airimmediately from 20 to 10 ℃ for live transport simulation
Appendix 3. Changes in muscle of H. discus hannai after exposure to airimmediately from 20 to 20 ℃ for live transport simulation
Appendix 4. Changes in muscle of H. discus hannai after exposure to airimmediately from 20 to 28 ℃ for live transport simulation
Appendix 5. Representative flow cytometry analysis scatter plot of fixedhemocytes from H. discus hannai. Size against internal complexity densityplot of hemocyte positive for SYBR Green I staining. Two populations ofhemocytes were distinguishable: hyalinoc
Appendix 6. Determined hemocyte mortality by flow cytometry analysisof H. discus hannai hemocytes positive for propidium iodide (PI)
Appendix 7. Determination of oxidative activity with DCEH-DA in eachhemocyte population by flow cytometry analysis
Achievements
Acknowledgement
Biography
本文編號(hào):2971861
【文章來(lái)源】:廈門(mén)大學(xué)福建省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:120 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
摘要
CHAPTER 1. GENERAL INTRODUCTION
1.1. Biological overview of Pacific abalone
1.1.1. General characteristics, habitat and distribution
1.1.2. The circulation system and immunology system
1.1.2.1. Blood circulation
1.1.2.2. Blood chemistry baseline values
1.1.2.3. Immunology system
1.1.3. Respiration system
1.1.3.1. Aerobic respiration and anaerobic respiration
1.1.4. Reproductive system
1.2. Status abalone in China
1.2.1. China's abalone market and transportation
1.2.2. The effects of transport stress
Defining stress
The research purpose
CHAPTER 2. PHYSIOLOGICAL ASSESSMENT OF LIVE PACIFICABALONEIN DIFFERENT TRANSPORT PACKAGING
2.1. Introduction
2.2. Methodologies
2.2.1. Animals sample
2.2.2. Equipment
2.2.3. Experimental design
2.2.4. Statistical analysis
2.3. Results
2.3.1. Survival rate
2.3.2. Weight loss rate
2.4. Discussion
2.4.1. Survival rate
2.4.2. Weight loss rate
CHAPTER 3. HPLC FOR DETERMINATION ORGANIC ACIDS INANAEROBIC RESPIRATION IN PACIFIC ABALONE HEMOLYMPHDURING AIR EXPOSURE TRANSPORT
3.1. Introduction
3.2. Methodologies
3.2.1. Animals sample
3.2.2. Chemical reagents
3.2.3. Equipment
3.2.4. Experimental design
3.2.5. Methods
3.2.6. Data analysis
3.3. Results
3.3.1. Blood pyruvate and blood lactate in H. discus hannai hemolymph
3.4. Discussion
CHAPTER 4. IMPACTS OF AIR EXPOSURE ON THE IMMUNERESPONSE IN HALIOTIS DISCUS HANNAI DURING SIMULATEDLIVE TRANSPORT
4.1. Introduction
4.2. Methodologies
4.2.1. Animals sample
4.2.2. Chemical reagents
4.2.3. Equipment
4.2.4. Methods
4.2.4.1. Light microscope
4.2.4.2. Total hemocyte count (THC)
4.2.4.3. Haemocyte Mortality
4.2.4.4. Reactive oxygen species (ROS)
4.3. Results
4.3.1. Light microscopy
4.3.2. Total hemocytes count (THC)
4.3.3. Haemocyte mortality
4.3.4. Reactive oxygen species (ROS)
4.4. Discussion
4.4.1. Light microscope
4.4.2. Immune response
CHAPTER 5. MORPHOLOGICAL CHANGES IN GONADS ANDTHE IMMUNE REPONSE OF HALIOTIS DISCUS HANNAI DURINGSPAWNING PERIOD
Part 5.1. Gonad morphological
5.1.1. Introduction
5.1.2. Methodologies
5.1.2.1 Animals sample
5.1.2.2. Chemical reagents
5.1.2.3. Equipment
5.1.3. Results
Part 5.2. Effects of immune response during spawning period
5.2.1. Methodologies
5.2.1.1. Animals sample
5.2.1.2. Chemical reagents
5.2.1.3. Equipment
5.2.1.4. Methods
5.2.1.4.1. Total hemocyte count(THC)
5.2.1.4.2. Hemocyte Mortality
5.2.1.4.3. Reactive oxygen species
5.2.1.5. Statistical analyses
5.2.2. Results
5.2.2.1. Total hemocytes count
5.2.2.2. Hemocyte Mortality
5.2.2.3. Reactive oxygen species
5.2.3. Discussion
5.2.3.1. Morphological changes in gonads
5.2.3.2. Immune response
CHAPTER 6. SUMMARY AND FUTURE RESEARCH
6.1. Summary
6.2. Future research
References
Appendix 1. Changes in muscle of H. discus hannai after exposure to airimmediately from 20 to 5 ℃ for live transport simulation
Appendix 2. Changes in muscle of H. discus hannai after exposure to airimmediately from 20 to 10 ℃ for live transport simulation
Appendix 3. Changes in muscle of H. discus hannai after exposure to airimmediately from 20 to 20 ℃ for live transport simulation
Appendix 4. Changes in muscle of H. discus hannai after exposure to airimmediately from 20 to 28 ℃ for live transport simulation
Appendix 5. Representative flow cytometry analysis scatter plot of fixedhemocytes from H. discus hannai. Size against internal complexity densityplot of hemocyte positive for SYBR Green I staining. Two populations ofhemocytes were distinguishable: hyalinoc
Appendix 6. Determined hemocyte mortality by flow cytometry analysisof H. discus hannai hemocytes positive for propidium iodide (PI)
Appendix 7. Determination of oxidative activity with DCEH-DA in eachhemocyte population by flow cytometry analysis
Achievements
Acknowledgement
Biography
本文編號(hào):2971861
本文鏈接:http://sikaile.net/nykjlw/scyylw/2971861.html
最近更新
教材專(zhuān)著