水稻雨養(yǎng)低地條件下的產(chǎn)量、耐旱性和黃斑病抗性的同步改良及其遺傳解析
發(fā)布時間:2022-11-01 19:02
通過育種改良多重性狀是雨養(yǎng)低地生態(tài)系統(tǒng)(Lowland)下持續(xù)提高水稻產(chǎn)量最為可行的選擇之一。中國農(nóng)業(yè)科學(xué)院水稻分子育種與分子遺傳實(shí)驗(yàn)室與國際水稻研究所聯(lián)合開展穿梭育種項目培育新的廣適性材料,希望打破目前雨養(yǎng)低地生態(tài)系統(tǒng)下的水稻產(chǎn)量瓶頸。這個計劃利用多個供體親本和大規(guī);亟粚(dǎo)入的方法將新基因?qū)雰?yōu)異骨干品種,可以得到大量具備產(chǎn)量潛力的育種群體,用于評價多種生物和非生物脅迫抗性。本研究對5個抗草稻1號(WTR1)的BC1F3導(dǎo)入系群體評價了其在雨養(yǎng)低地生態(tài)系統(tǒng)下的適應(yīng)性。主要目標(biāo)性狀是高產(chǎn)、耐旱和黃斑病毒(RYMV)抗性;在灌溉和脅迫條件下均以籽粒產(chǎn)量作為選擇的重要指標(biāo)。通過大田間的干旱脅迫和灌溉條件,共篩選到65個入選株系表現(xiàn)抗RYMV并且比輪回親本表現(xiàn)高產(chǎn),其中包括干旱條件下34個,灌溉條件下31個。入選株系的后代測驗(yàn)在巴加莫約(BM,坦桑尼亞)、北京(BJ,旱棚)和海南(HN,雨養(yǎng)低地)三個地點(diǎn)進(jìn)行:其中,在BM的RYMV抗性后代鑒定采用苗期人工接種致病性最強(qiáng)的S4菌株來進(jìn)行;在BM、BJ和HN都考察了大田灌溉和干旱脅迫條件下的產(chǎn)量組分?紤]到環(huán)境因素,研究采用相對嚴(yán)格的選擇標(biāo)準(zhǔn),...
【文章頁數(shù)】:137 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
abstract
CHAPTER 1 General Introduction
1.1 Introduction
1.1.1 Research aims and objectives
1.2 Literature review
1.2.1 Rice environments and cropping systems
1.2.2 Rice domestication and classification
1.2.3 Evolution of grain yield improvement in rice
1.2.4 The current understanding of the genetic and molecular controls of grain yield in rice
1.2.5 Breeding strategies to break the glass ceiling of grain yield
1.2.6 Influence of functional genomic tools on plant breeding for crop improvement
1.2.7 Breeding for high yield and multiple stress tolerance
1.2.8 Trends in Rice production across the world
1.3. Scope and outline of the thesis
CHAPTER 2 Methodology
2.1 Introduction
2.2 Technical route
2.3 Source of breeding materials
2.4 Characteristics of target population environment (TPE)
2.5 Screening for drought tolerance and RYMV resistance in target population environment
2.6 Progeny testing experiments
2.7 Screening for WTR1 Introgession lines for resistance to RYMV
2.8 Genotyping of the WTR1 ILs
CHAPTER 3 Genetic Variability, trait Heritability, Associations, and Path Coefficient Analysis onYield and Yield component traits
3.1 Introduction
3.2 Methodology
3.2.1 Study materials
3.2.2 Methods
3.2.3 Data analysis
3.3 Results and discussion
3.3.1 Genetic variation and Performance of the 65 ILs under WTR1 background
3.3.2 Genetic variation and phenotypic characteristics of the yield component traits
3.3.3 Heritability of the yield component traits under variable water regimes
3.3.4 Association between high grain yield and yield component traits under variable water regimes
3.3.5 Path coefficient analysis for direct and indirect effects of nine yield component traits on grain yield
3.3.6 Selection of promising ILs
3.3.7 Pyramid crosses of the WTR1 ILs for high grain yield and multiple trait tolerance
3.3.8 screening of F2 progeny for drought tolerance at reproductive stage
3.4 Conclusion
CHAPTER 4 Connotation of RYMV resistance on high grain yield traits in rice
4.1 Introduction
4.1.1 Natural resistance
4.2 Methodology
4.2.1 Materials
4.2.2 Methods
4.2.3 Molecular screening for the RYMV1 gene resistance to RYMV
4.2.4 QTL analysis
4.3 Results and discussion
4.3.1 Response of WTR1 ILs to RYMV S4 strain
4.3.2 Evaluation of gene resistance to RYMV contained in the identified 39 ILs
4.3.3 Association of RYMV resistance QTL with high grain Yield QTL under irrigation and drought conditions
4.3.4 Collocation between RYMV QTL and High grain yield QTL
4.4 Conclusion
CHAPTER 5 The genes and QTL for yield under Multiple Biotic and abiotic stress
5.1 Introduction
5.2 Methodology
5.2.1 Materials
5.2.2 Data analysis
5.3 Results and discussion
5.3.1 Lead SNP (genes/QTL) with significant association with yield component traits
5.3.2 Overlapping lead SNPs (Genes/QTL) for various yield component traits
5.4 Conclusion
Overall conclusion and recommendation
6.1 General conclusions
6.2 Recommendations
References
Acknowlegments
Biographical scketch of the author
【參考文獻(xiàn)】:
期刊論文
[1]Use of Major Quantitative Trait Loci to Improve Grain Yield of Rice[J]. GUO Long-biao,YE Guo-you. Rice Science. 2014(02)
[2]Yield-related QTLs and Their Applications in Rice Genetic Improvement[J]. Xufeng Bai,Bi Wu and Yongzhong Xing National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research,Huazhong Agricultural University,Wuhan 430070,China. Journal of Integrative Plant Biology. 2012(05)
[3]Genetic Analysis on Characteristics to Measure Drought Resistance Using Dongxiang Wild Rice(Oryza rufupogon Griff.) and Its Derived Backcross Inbred Lines Population at Seedling Stage[J]. HU Biao-lin1,2,FU Xue-qin2,ZHANG Tao1,WAN Yong1,LI Xia1,HUANG Yun-hong2,DAI Liang-fang2,LUO Xiang-dong2 and XIE Jian-kun1,21 Rice Research Institute,Jiangxi Academy of Agricultural Sciences,Nanchang 330200,P.R.China 2 College of Life Sciences,Jiangxi Normal University,Nanchang 330022,P.R.China. Agricultural Sciences in China. 2011(11)
[4]Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice[J]. ZANG JinPing 1 ,SUN Yong 1 ,WANG Yun 1 ,YANG Jing 1 ,LI Fang 1 ,ZHOU YongLi 1 ,ZHU LingHua 1 , Reys JESSICA2,Fotokian MOHAMMADHOSEIN 2,XU JianLong 1&LI ZhiKang 1,2 1Institute of Crop Sciences/National Key Facility for Crop Gene Resources&Genetic Improvement,Chinese Academy of Agricul- tural Sciences,Beijing 100081,China; 2International Rice Research Institute,DAPO Box 7777,Metro Manila,Philippines. Science in China(Series C:Life Sciences). 2008(07)
[5]Transfer of bacterial blight resistance from Oryza meyeriana to O. sativa L. by asymmetric somatic hybridization[J]. ZHU Yongsheng1, CHEN Baotang1, YU Shunwu1, ZHANG Duanpin1, ZHANG Xueqin2 & YAN Qiusheng2 1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; 2. China National Rice Research Institute, Hangzhou 310006, China. Chinese Science Bulletin. 2004(14)
本文編號:3699926
【文章頁數(shù)】:137 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
abstract
CHAPTER 1 General Introduction
1.1 Introduction
1.1.1 Research aims and objectives
1.2 Literature review
1.2.1 Rice environments and cropping systems
1.2.2 Rice domestication and classification
1.2.3 Evolution of grain yield improvement in rice
1.2.4 The current understanding of the genetic and molecular controls of grain yield in rice
1.2.5 Breeding strategies to break the glass ceiling of grain yield
1.2.6 Influence of functional genomic tools on plant breeding for crop improvement
1.2.7 Breeding for high yield and multiple stress tolerance
1.2.8 Trends in Rice production across the world
1.3. Scope and outline of the thesis
CHAPTER 2 Methodology
2.1 Introduction
2.2 Technical route
2.3 Source of breeding materials
2.4 Characteristics of target population environment (TPE)
2.5 Screening for drought tolerance and RYMV resistance in target population environment
2.6 Progeny testing experiments
2.7 Screening for WTR1 Introgession lines for resistance to RYMV
2.8 Genotyping of the WTR1 ILs
CHAPTER 3 Genetic Variability, trait Heritability, Associations, and Path Coefficient Analysis onYield and Yield component traits
3.1 Introduction
3.2 Methodology
3.2.1 Study materials
3.2.2 Methods
3.2.3 Data analysis
3.3 Results and discussion
3.3.1 Genetic variation and Performance of the 65 ILs under WTR1 background
3.3.2 Genetic variation and phenotypic characteristics of the yield component traits
3.3.3 Heritability of the yield component traits under variable water regimes
3.3.4 Association between high grain yield and yield component traits under variable water regimes
3.3.5 Path coefficient analysis for direct and indirect effects of nine yield component traits on grain yield
3.3.6 Selection of promising ILs
3.3.7 Pyramid crosses of the WTR1 ILs for high grain yield and multiple trait tolerance
3.3.8 screening of F2 progeny for drought tolerance at reproductive stage
3.4 Conclusion
CHAPTER 4 Connotation of RYMV resistance on high grain yield traits in rice
4.1 Introduction
4.1.1 Natural resistance
4.2 Methodology
4.2.1 Materials
4.2.2 Methods
4.2.3 Molecular screening for the RYMV1 gene resistance to RYMV
4.2.4 QTL analysis
4.3 Results and discussion
4.3.1 Response of WTR1 ILs to RYMV S4 strain
4.3.2 Evaluation of gene resistance to RYMV contained in the identified 39 ILs
4.3.3 Association of RYMV resistance QTL with high grain Yield QTL under irrigation and drought conditions
4.3.4 Collocation between RYMV QTL and High grain yield QTL
4.4 Conclusion
CHAPTER 5 The genes and QTL for yield under Multiple Biotic and abiotic stress
5.1 Introduction
5.2 Methodology
5.2.1 Materials
5.2.2 Data analysis
5.3 Results and discussion
5.3.1 Lead SNP (genes/QTL) with significant association with yield component traits
5.3.2 Overlapping lead SNPs (Genes/QTL) for various yield component traits
5.4 Conclusion
Overall conclusion and recommendation
6.1 General conclusions
6.2 Recommendations
References
Acknowlegments
Biographical scketch of the author
【參考文獻(xiàn)】:
期刊論文
[1]Use of Major Quantitative Trait Loci to Improve Grain Yield of Rice[J]. GUO Long-biao,YE Guo-you. Rice Science. 2014(02)
[2]Yield-related QTLs and Their Applications in Rice Genetic Improvement[J]. Xufeng Bai,Bi Wu and Yongzhong Xing National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research,Huazhong Agricultural University,Wuhan 430070,China. Journal of Integrative Plant Biology. 2012(05)
[3]Genetic Analysis on Characteristics to Measure Drought Resistance Using Dongxiang Wild Rice(Oryza rufupogon Griff.) and Its Derived Backcross Inbred Lines Population at Seedling Stage[J]. HU Biao-lin1,2,FU Xue-qin2,ZHANG Tao1,WAN Yong1,LI Xia1,HUANG Yun-hong2,DAI Liang-fang2,LUO Xiang-dong2 and XIE Jian-kun1,21 Rice Research Institute,Jiangxi Academy of Agricultural Sciences,Nanchang 330200,P.R.China 2 College of Life Sciences,Jiangxi Normal University,Nanchang 330022,P.R.China. Agricultural Sciences in China. 2011(11)
[4]Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice[J]. ZANG JinPing 1 ,SUN Yong 1 ,WANG Yun 1 ,YANG Jing 1 ,LI Fang 1 ,ZHOU YongLi 1 ,ZHU LingHua 1 , Reys JESSICA2,Fotokian MOHAMMADHOSEIN 2,XU JianLong 1&LI ZhiKang 1,2 1Institute of Crop Sciences/National Key Facility for Crop Gene Resources&Genetic Improvement,Chinese Academy of Agricul- tural Sciences,Beijing 100081,China; 2International Rice Research Institute,DAPO Box 7777,Metro Manila,Philippines. Science in China(Series C:Life Sciences). 2008(07)
[5]Transfer of bacterial blight resistance from Oryza meyeriana to O. sativa L. by asymmetric somatic hybridization[J]. ZHU Yongsheng1, CHEN Baotang1, YU Shunwu1, ZHANG Duanpin1, ZHANG Xueqin2 & YAN Qiusheng2 1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; 2. China National Rice Research Institute, Hangzhou 310006, China. Chinese Science Bulletin. 2004(14)
本文編號:3699926
本文鏈接:http://sikaile.net/nykjlw/nzwlw/3699926.html
最近更新
教材專著