水稻苗期缺鉀條件下根數(shù)QTL qRN5a的精細(xì)定位
發(fā)布時間:2022-01-17 10:47
鉀(K)是植物生長發(fā)育等多種生理過程中不可或缺的礦物質(zhì)成分。水稻缺K現(xiàn)象常常發(fā)生,導(dǎo)致生長受限和減產(chǎn)。目前,我們對水稻低K(LK)耐受的分子機制仍然知之甚少。本研究通過構(gòu)建遺傳群體,對水稻苗期缺鉀條件下根數(shù)QTL qRN5a進(jìn)行了精細(xì)定位及候選基因分析。研究結(jié)果如下:1.利用中恢9308(ZH9308,LK敏感型)和協(xié)青早B(XQZB,LK耐受型)雜交配組而成的75個染色體片段代換系(CSSLs)對苗期地上部和根部性狀進(jìn)行了QTL分析。在水培條件下,研究了5個苗期性狀(根長、根數(shù)、根干重、莖干重和總干重)在LK和正常K(NK)條件下的QTL及其相關(guān)性狀的比值(LK/NK)。在4條染色體(3、4、5和6)上共鑒定到5個QTL,XQZB對根長(RL)、根數(shù)(RN)具有正等位效應(yīng),對地上部干重(SDW)、根干重(RDW)具有負(fù)等位效應(yīng)。在LK條件下檢測到2個QTL,qRN5a和qSDW4,在LK/NK條件下鑒定到3個QTL,qRL6、qRN5b和qRDW3,解釋了11.81%至13.07%的總表型變異。在已鑒定的QTL中,第5染色體上與根數(shù)相關(guān)的QTL qRN5a和qRN5b最有效,因為這些...
【文章來源】:中國農(nóng)業(yè)科學(xué)院北京市
【文章頁數(shù)】:103 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
abstract
CHAPTER1 INTRODUCTION
1.1 GENERAL INTRODUCTION
1.2 REVIEW OF LITERATURE
1.2.1 Availability of potassium and its requirements
1.2.2 Functions of potassium in the plant
1.2.3 Potassium transporter and its functions in plants
1.2.4 Plant sensing and signaling with regards to potassium
1.2.5 Adaptation to potassium deficiency and syndromes
1.2.6 Root response associated with potassium
1.2.7 Quantitative trait locus(QTL)mapping and its genetic basis
1.2.8 QTL for mineral nutrient potassium(K)
1.2.9 A brief of mapping population for QTL analysis
1.3 PROSPECT OF K DEFICIENCY TOLERANT QTL
CHAPTER2 IDENTIFICATION OF QTL FOR RICE SEEDLING TRAITS USING CSSL POPULATION UNDER DIFFERENT POTASSIUM LEVELS
2.1 INTRODUCTION
2.2 MATERIALS AND METHODS
2.2.1 Development of the CSSL population
2.2.2 Hydroponic plant cultivation and phenotypic evaluation
2.2.3 Sampling and measurement of seedling traits
2.2.4 DNA extraction for genotyping
2.2.5 Data analysis and QTL Mapping
2.3 RESULTS
2.3.1 Phenotypic variation in CSSL population
2.3.2 Correlation coefficients for studied traits
2.3.3 QTL analysis for seedling traits
2.4 DISCUSSION
2.5 CONCLUSIONS
CHAPTER3 FINE MAPPING AND CANDIDATE GENE ANALYSIS OF qRN5a,A QTL UNDER LOW K THAT POSITIVELY REGULATES ROOT NUMBER AT THE SEEDLING STAGE IN RICE
3.1 INTRODUCTION
3.2 METHODS AND MATERIALS
3.2.1 Plant materials
3.2.2 Hydroponic culture conditions
3.2.3 Sampling and measurement of seedling root traits
3.2.4 DNA extraction and molecular marker development
3.2.5 RNA extraction and quantitative real-time(qRT)PCR
3.2.6 Data analysis
3.3 RESULTS
3.3.1 Phenotypic evaluation of the F2(BC5F2)population with parents
3.3.2 Validation and delimitation of qRN5a using the F2(BC5F2)population
3.3.3 Phenotypic evaluation of qRN5a
3.3.4 Fine mapping of qRN5a
3.3.5 Candidate genes analysis of qRN5a
3.3.6 Expression pattern analysis of candidate genes of qRN5a
3.3.7 Relation between qRN5a and other root growth-regulating genes and K transporters
3.4 DISCUSSION
3.4.1 qRN5a is the first fine mapped QTL controlling RN under LK in rice
3.4.2 qRN5a is involved in the root development regulatory network under LK
3.5 CONCLUSION
CHAPTER4 MAJOR FINDINGS AND FUTURE PERSPECTIVE
4.1 MAJOR FINDINGS
4.2 FUTURE PERSPECTIVE
REFERENCES
APPENDIX A
ACKNOWLEDGMENTS
AUTHOR’S RESUME
【參考文獻(xiàn)】:
期刊論文
[1]水稻耐低鉀種質(zhì)資源的苗期篩選[J]. 王廣洋,陸文怡,陳慧男,張曉勤,薛大偉. 杭州師范大學(xué)學(xué)報(自然科學(xué)版). 2015(01)
[2]Transport, signaling, and homeostasis of potassium and sodium in plants[J]. Eri Adams,Ryoung Shin. Journal of Integrative Plant Biology. 2014(03)
[3]Molecular evolution and functional divergence of HAK potassium transporter gene family in rice(Oryza sativa L.)[J]. Zefeng Yang a,Qingsong Gao a,Changsen Sun b,Wenjuan Li a,Shiliang Gu a,Chenwu Xu a,a Jiangsu Provincial Key laboratory of Crop Genetics and Physiology,Key Laboratory of Plant Functional Genomics of Ministry of Education,Yangzhou University,Yangzhou 225009,China b School of Life Sciences,Taizhou University,Linhai 317000,China. 遺傳學(xué)報. 2009(03)
[4]數(shù)量性狀基因的完備區(qū)間作圖方法[J]. 王建康. 作物學(xué)報. 2009(02)
[5]Membrane Transporters for Nitrogen,Phosphate and Potassium Uptake in Plants[J]. Yi-Fang Chen, Yi Wang and Wei-Hua Wu (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre, Beijing 100094, China). Journal of Integrative Plant Biology. 2008(07)
[6]Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency[J]. Ghulam JILANI. Journal of Zhejiang University(Science B:An International Biomedicine & Biotechnology Journal). 2008(05)
[7]The role of calcium sensor-interacting protein kinases in plant adaptation to potassium-deficiency: new answers to old questions[J]. Anna Amtmann,Patrick Armengaud. Cell Research. 2007(06)
[8]低鉀脅迫下水稻鉀高效基因型若干生長特性和營養(yǎng)特性的研究[J]. 劉建祥,楊肖娥,楊玉愛,吳良?xì)g. 植物營養(yǎng)與肥料學(xué)報. 2003(02)
[9]秈稻耐低鉀基因型的篩選[J]. 劉國棟,劉更另. 作物學(xué)報. 2002(02)
[10]高質(zhì)量植物基因組DNA的分離[J]. 羅志勇,周鋼,陳湘暉,陸秋恒,胡維新. 湖南醫(yī)科大學(xué)學(xué)報. 2001(02)
本文編號:3594591
【文章來源】:中國農(nóng)業(yè)科學(xué)院北京市
【文章頁數(shù)】:103 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
abstract
CHAPTER1 INTRODUCTION
1.1 GENERAL INTRODUCTION
1.2 REVIEW OF LITERATURE
1.2.1 Availability of potassium and its requirements
1.2.2 Functions of potassium in the plant
1.2.3 Potassium transporter and its functions in plants
1.2.4 Plant sensing and signaling with regards to potassium
1.2.5 Adaptation to potassium deficiency and syndromes
1.2.6 Root response associated with potassium
1.2.7 Quantitative trait locus(QTL)mapping and its genetic basis
1.2.8 QTL for mineral nutrient potassium(K)
1.2.9 A brief of mapping population for QTL analysis
1.3 PROSPECT OF K DEFICIENCY TOLERANT QTL
CHAPTER2 IDENTIFICATION OF QTL FOR RICE SEEDLING TRAITS USING CSSL POPULATION UNDER DIFFERENT POTASSIUM LEVELS
2.1 INTRODUCTION
2.2 MATERIALS AND METHODS
2.2.1 Development of the CSSL population
2.2.2 Hydroponic plant cultivation and phenotypic evaluation
2.2.3 Sampling and measurement of seedling traits
2.2.4 DNA extraction for genotyping
2.2.5 Data analysis and QTL Mapping
2.3 RESULTS
2.3.1 Phenotypic variation in CSSL population
2.3.2 Correlation coefficients for studied traits
2.3.3 QTL analysis for seedling traits
2.4 DISCUSSION
2.5 CONCLUSIONS
CHAPTER3 FINE MAPPING AND CANDIDATE GENE ANALYSIS OF qRN5a,A QTL UNDER LOW K THAT POSITIVELY REGULATES ROOT NUMBER AT THE SEEDLING STAGE IN RICE
3.1 INTRODUCTION
3.2 METHODS AND MATERIALS
3.2.1 Plant materials
3.2.2 Hydroponic culture conditions
3.2.3 Sampling and measurement of seedling root traits
3.2.4 DNA extraction and molecular marker development
3.2.5 RNA extraction and quantitative real-time(qRT)PCR
3.2.6 Data analysis
3.3 RESULTS
3.3.1 Phenotypic evaluation of the F2(BC5F2)population with parents
3.3.2 Validation and delimitation of qRN5a using the F2(BC5F2)population
3.3.3 Phenotypic evaluation of qRN5a
3.3.4 Fine mapping of qRN5a
3.3.5 Candidate genes analysis of qRN5a
3.3.6 Expression pattern analysis of candidate genes of qRN5a
3.3.7 Relation between qRN5a and other root growth-regulating genes and K transporters
3.4 DISCUSSION
3.4.1 qRN5a is the first fine mapped QTL controlling RN under LK in rice
3.4.2 qRN5a is involved in the root development regulatory network under LK
3.5 CONCLUSION
CHAPTER4 MAJOR FINDINGS AND FUTURE PERSPECTIVE
4.1 MAJOR FINDINGS
4.2 FUTURE PERSPECTIVE
REFERENCES
APPENDIX A
ACKNOWLEDGMENTS
AUTHOR’S RESUME
【參考文獻(xiàn)】:
期刊論文
[1]水稻耐低鉀種質(zhì)資源的苗期篩選[J]. 王廣洋,陸文怡,陳慧男,張曉勤,薛大偉. 杭州師范大學(xué)學(xué)報(自然科學(xué)版). 2015(01)
[2]Transport, signaling, and homeostasis of potassium and sodium in plants[J]. Eri Adams,Ryoung Shin. Journal of Integrative Plant Biology. 2014(03)
[3]Molecular evolution and functional divergence of HAK potassium transporter gene family in rice(Oryza sativa L.)[J]. Zefeng Yang a,Qingsong Gao a,Changsen Sun b,Wenjuan Li a,Shiliang Gu a,Chenwu Xu a,a Jiangsu Provincial Key laboratory of Crop Genetics and Physiology,Key Laboratory of Plant Functional Genomics of Ministry of Education,Yangzhou University,Yangzhou 225009,China b School of Life Sciences,Taizhou University,Linhai 317000,China. 遺傳學(xué)報. 2009(03)
[4]數(shù)量性狀基因的完備區(qū)間作圖方法[J]. 王建康. 作物學(xué)報. 2009(02)
[5]Membrane Transporters for Nitrogen,Phosphate and Potassium Uptake in Plants[J]. Yi-Fang Chen, Yi Wang and Wei-Hua Wu (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, National Plant Gene Research Centre, Beijing 100094, China). Journal of Integrative Plant Biology. 2008(07)
[6]Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency[J]. Ghulam JILANI. Journal of Zhejiang University(Science B:An International Biomedicine & Biotechnology Journal). 2008(05)
[7]The role of calcium sensor-interacting protein kinases in plant adaptation to potassium-deficiency: new answers to old questions[J]. Anna Amtmann,Patrick Armengaud. Cell Research. 2007(06)
[8]低鉀脅迫下水稻鉀高效基因型若干生長特性和營養(yǎng)特性的研究[J]. 劉建祥,楊肖娥,楊玉愛,吳良?xì)g. 植物營養(yǎng)與肥料學(xué)報. 2003(02)
[9]秈稻耐低鉀基因型的篩選[J]. 劉國棟,劉更另. 作物學(xué)報. 2002(02)
[10]高質(zhì)量植物基因組DNA的分離[J]. 羅志勇,周鋼,陳湘暉,陸秋恒,胡維新. 湖南醫(yī)科大學(xué)學(xué)報. 2001(02)
本文編號:3594591
本文鏈接:http://sikaile.net/nykjlw/nzwlw/3594591.html
最近更新
教材專著