天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

利用基因工程途徑強(qiáng)化小麥葉酸和花青素含量的研究

發(fā)布時(shí)間:2021-01-03 20:21
  世界上很多人正在遭受營(yíng)養(yǎng)不良的困擾,而谷類(lèi)和塊莖類(lèi)作物無(wú)法提供所有類(lèi)型的必需的營(yíng)養(yǎng)物質(zhì)。為了解決這一問(wèn)題,人們嘗試了多種方法,比如營(yíng)養(yǎng)添加劑、食品營(yíng)養(yǎng)強(qiáng)化和糧食作物生物強(qiáng)化。小麥作為“谷物之王”,是谷物中非常重要的糧食作物,并被認(rèn)為是全球糧食安全的關(guān)鍵作物。因此,小麥具有很大的生物強(qiáng)化潛力。葉酸是維持細(xì)胞功能的基本要素,包括植物在內(nèi)的許多生物可以自己合成葉酸。人類(lèi)與其他脊椎動(dòng)物一樣,靠食物來(lái)攝入葉酸,并常因葉酸攝入不足而患上許多疾病;ㄇ嗨厥歉叩戎参锖铣傻拇紊x產(chǎn)物,負(fù)責(zé)花和果實(shí)的著色,也用作常規(guī)和分子育種中的可見(jiàn)標(biāo)記。植物源的花青素也很重要,花青素具有抗炎、抗癌活性,所以攝入花青素可以預(yù)防冠心病。MYB和bHLH轉(zhuǎn)錄因子參與到花青素生物合成途徑中,并與WD40蛋白形成一個(gè)三元復(fù)合物調(diào)控花青素合成通路中的結(jié)構(gòu)基因。在本研究中,我們?cè)u(píng)估了中國(guó)不同的小麥種質(zhì),探索不同小麥種質(zhì)中葉酸含量的自然變化。此外,通過(guò)代謝工程對(duì)小麥籽粒進(jìn)行生物強(qiáng)化以獲得高葉酸含量。首先,將參與葉酸前體蝶呤和對(duì)氨基苯甲酸合成的大豆基因GmGCHI(GTP cyclohydrolase I)和GmADCS(aminod... 

【文章來(lái)源】:中國(guó)農(nóng)業(yè)科學(xué)院北京市

【文章頁(yè)數(shù)】:131 頁(yè)

【學(xué)位級(jí)別】:博士

【文章目錄】:
摘要
Abstract
Abbreviation
Chapter 1:Introduction
    1.1 Malnutrition in the world
        1.1.1 Economic impact of malnutrition
        1.1.2 Causes of malnutrition/micronutrients deficiencies
        1.1.3 Strategies to combat the malnutrition
    1.2 Wheat as a potential crop for biofortification
    1.3 Folates biosynthesis and biofortification
        1.3.1 Folate biosynthesis
        1.3.2 Problems caused by folate deficiency
        1.3.3 Strategies to fight against folate deficiency
    1.4 Anthocyanin biosynthesis and biofortification
        1.4.1 Anthocyanins and their nutraceuticals properties
        1.4.2 Anthocyanin biosynthesis
        1.4.3 Biofortification for anthocyanins
    1.5 Objectives of the present study
Chapter 2:Folate content analysis of wheat cultivars developed in the North China Plain
    2.1 Introduction
    2.2 Materials and methods
        2.2.1 Plant materials
        2.2.2 Chemicals and reagents
        2.2.3 Folate extraction and deglutamylation
        2.2.4 Folate determination by HPLC–MS/MS
        2.2.5 Statistical analysis
    2.3 Results
        2.3.1 Overall variation of the total folate levels in wheat samples
        2.3.2 Screening of wheat genotypes with high folate content in different regions
        2.3.3 Distribution of folate forms in Chinese wheat genotypes
        2.3.4 Association of wheat folate contents with environment
    2.4 Discussion
    2.5 Summary
Chapter 3:Folate fortification of wheat by genetic engineering approach
    3.1 Introduction
    3.2 Materials and methods
        3.2.1 Plant material and growth conditions
        3.2.2 Construction and transformation of overexpression vectors
        3.2.3 Identification of transgenic wheat plants through Quickstix method
        3.2.4 Identification of transgenic plants through PCR amplification of transgenes
        3.2.5 Determination of expression levels of transgenes in the grains of transgenic plants
        3.2.6 Obtaining of homozygous wheat transgenic plants through double haploids
        3.2.7 Chromosome preparation and fluorescent in situ hybridization
        3.2.8 Determination of levels of folate and its precursors contained in transgenic plants
        3.2.9 Investigation the effect of transgenes GmGCHI and GmADCS on agronomic traits of transgenic wheat plants
        3.2.10 Statistical analysis
    3.3 Results
        3.3.1 Co-expression of GmGCHI and GmADCS in wheat transgenic plants
        3.3.2 Co-expression of codon-optimized soybean GmGCHI and tomato LeADCS in wheat
    3.4 Discussion
    3.5 Summary
Chapter 4:Anthocyanin accumulation in wheat through expression of maize transcriptional factors
    4.1 Introduction
    4.2 Materials and methods
        4.2.1 Plant material and growth conditions
        4.2.2 Construction of expression vectors containing transcriptional factors involved in anthocyanin biosynthesis
        4.2.3 Agrobacterium-mediated transformation using wheat immature embryos
        4.2.4 Detection of bar protein through Quickstix strip method
        4.2.5 DNA extraction and PCR amplification
        4.2.6 Southern blot analysis
        4.2.7 Chromosome preparation and fluorescent in situ hybridization
        4.2.8 Obtaining of homozygous wheat transgenic plants through double haploids
        4.2.9 RNA extraction and quantitative real-time PCR assay
        4.2.10 Determination of pigment contents in the transgenic wheat plants
    4.3 Results
        4.3.1 Purple phenotype of expressed R2R3-MYB and bHLH type TFs in wheat immature embryos and derived tissues after transformation
        4.3.2 Agrobacterium-mediated transformation efficiency and obtaining of wheat transgenic plants
        4.3.3 Quickstix detection of bar protein in wheat transgenic wheat plants
        4.3.4 PCR detection of transgenic wheat plants
        4.3.5 Southern blot analysis
        4.3.6 Production of doubling haploid wheat plants through gynogenesis
        4.3.7 Production of doubling haploid plants through colchicine application
        4.3.8 Identification of stable transgenic wheat plants through fluorescent in situ hybridization analysis(FISH)
        4.3.9 Phenotype of three types of stable transgenic lines expressing ZmC1 and/or ZmR genes
        4.3.10 Expression profiling of the two target genes ZmC1 and ZmR as well as their wheat homologous genes in the three types of transgenic lines
        4.3.11 Expression profiling of wheat native anthocyanin biosynthesis related genes in the three types of transgenic lines
        4.3.12 Pigment contents in the seeds of transgenic wheat plants
    4.4 Discussion
    4.5 Summary
Conclusion
References
ACKNOWLEDGEMENTS
RESUME
附件



本文編號(hào):2955428

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/nykjlw/nzwlw/2955428.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)07094***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com