基于深度學(xué)習(xí)的脈搏波連續(xù)血壓測量
[Abstract]:In today's society, the number of patients with cardiovascular disease is high due to the heavy work pressure and irregular living and rest. If the cardiovascular parameters can be studied and the relationship between them can be analyzed, the monitoring of cardiovascular disease can be realized, and the incidence of cardiovascular disease can be prevented and reduced. Blood pressure is an important physiological parameter, which can reflect the cardiovascular function of human body. Pulse wave signal contains a lot of physiological and pathological information of human body. It is simple to measure blood pressure by pulse wave characteristic parameters, low cost, high accuracy, and can be continuously measured, so it has a broad development prospect. Based on the theory of blood pressure measurement, two continuous blood pressure measurement models are established in this paper. One is to construct blood pressure model by regression analysis according to the traditional method; the other is to build BP model of neural network with the help of BP neural network to train the relationship between blood pressure and characteristic parameters in the framework of in-depth learning TensorFlow. The experimental results show that the blood pressure error calculated by the two models is within the 3mmHg standard value, while the second model error is within the 2mmHg. Conforms to the international standard value. The main work of this paper is as follows: firstly, the pulse wave signal is collected by using the photoelectric heart rate meter (fingertip type), the signal filtering is completed by wavelet transform and 5.3 times, and the feature points are extracted. A hybrid algorithm is proposed to identify feature points, that is, threshold difference method, wavelet transform method and differential method. The results show that the algorithm can extract feature points accurately. Secondly, a blood pressure measurement model based on linear regression is established, that is, by extracting the time domain characteristic parameters of pulse wave and analyzing the correlation between blood pressure and characteristic parameters, the blood pressure model is obtained by stepwise regression analysis, and the blood pressure value is estimated. Compared with the standard blood pressure, the error is within 3mm Hg. At last, a BP neural network model of blood pressure is established based on the framework of deep learning TensorFlow, that is, the characteristic parameters of pulse wave are used as input of BP neural network, and the blood pressure model is obtained by training data. Through dropout in TensorFlow, the neural network is reduced and a certain number of characteristic parameters are removed, which can eliminate the over-fitting phenomenon and reduce the error, thus the optimal model can be established. In order to express the blood pressure model clearly, the final BP neural network model is presented by using the visualization tool TensorBoard. By estimating blood pressure, compared with standard blood pressure, the error is within 2mm Hg, which is more accurate than traditional method.
【學(xué)位授予單位】:曲阜師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R443.5;TP181
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏安海;尹軍;萇飛霸;李姝穎;周德強(qiáng);顏樂先;;無創(chuàng)連續(xù)血壓測量技術(shù)的研究進(jìn)展[J];中國醫(yī)療設(shè)備;2015年11期
2 劉彥偉;朱健銘;梁永波;陳真誠;;經(jīng)驗(yàn)?zāi)B(tài)分解和小波變換的連續(xù)血壓測量[J];計算機(jī)仿真;2015年11期
3 鄭英;陸清茹;左梅;王迷迷;黃卉;;基于ZigBee技術(shù)的病房病人心率監(jiān)測系統(tǒng)設(shè)計[J];電子制作;2015年17期
4 張宇博;舒紅平;岳希;;指端脈搏曲線特征參數(shù)提取方法研究[J];軟件導(dǎo)刊;2015年04期
5 劉沛;龐宇;吳寶明;王普領(lǐng);馬勛;;脈搏波形態(tài)特征與血壓相關(guān)性的研究[J];生命科學(xué)儀器;2015年01期
6 孫薇;唐寧;江貴平;;脈搏波信號特征點(diǎn)識別與預(yù)處理方法研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2015年01期
7 王賽;陸小左;;淺談中醫(yī)脈診認(rèn)識方式的歷史沿革[J];河南中醫(yī);2015年01期
8 楊建;;脈搏波信號采集與分析方法的研究[J];電腦與信息技術(shù);2014年03期
9 李章俊;王成;朱浩;金凡;馬俊領(lǐng);;基于光電容積脈搏波描記法的無創(chuàng)連續(xù)血壓測量[J];中國生物醫(yī)學(xué)工程學(xué)報;2012年04期
10 于瀟;林君;李肅義;;無創(chuàng)血壓測量技術(shù)的發(fā)展概況[J];廣東醫(yī)學(xué);2012年15期
相關(guān)碩士學(xué)位論文 前10條
1 付南;無袖帶連續(xù)血壓關(guān)聯(lián)因素分析及其非線性建模[D];南昌大學(xué);2016年
2 張笑東;無創(chuàng)血壓連續(xù)檢測技術(shù)研究[D];中國科學(xué)院研究生院(沈陽計算技術(shù)研究所);2016年
3 董鋒;基于脈搏波特征的連續(xù)血壓測量方法研究[D];云南大學(xué);2015年
4 周興忠;多信息同步采集系統(tǒng)構(gòu)建與血壓測量方法研究[D];蘭州理工大學(xué);2014年
5 沈蓉;血壓模擬平臺的構(gòu)建與連續(xù)血壓測量方法的研究[D];蘭州理工大學(xué);2014年
6 顏國棟;基于脈搏波的無創(chuàng)血壓測量方法研究[D];天津理工大學(xué);2013年
7 唐弘玲;基于信號處理的Android手機(jī)心率監(jiān)測軟件設(shè)計與實(shí)現(xiàn)[D];東華大學(xué);2013年
8 劉效林;基于脈搏波的無創(chuàng)連續(xù)血壓檢測的研究[D];北京交通大學(xué);2012年
9 鄒冬;點(diǎn)云模型的尖銳特征提取與分片分析[D];南京師范大學(xué);2012年
10 王繼寸;基于脈搏波的無創(chuàng)連續(xù)血壓測量方法研究[D];天津大學(xué);2009年
,本文編號:2224343
本文鏈接:http://sikaile.net/linchuangyixuelunwen/2224343.html