基于稀疏表示和字典訓(xùn)練的微血管分割方法研究
[Abstract]:The state information of microvessels is closely related to the metabolism level of human tissues and organs. When the blood flow in the microvessels is abnormal, it can reasonably be inferred that there is a pathological change in a certain part of the body. Microvascular information has important physiological, pathological, pharmacological and clinical significance. The recognition of microvessels also plays an important role in the early diagnosis and treatment of various diseases. At the same time, with the rapid development of computer, it has become very common to use computer to process and analyze digital image information. It can not only achieve zero trauma to organism, but also speed up data processing, improve processing efficiency and lighten the pressure of researchers. Therefore, the recognition of microvessels by digital image processing technology is of great significance in biological science, medical diagnosis and so on. This paper starts with the features of microvascular image and image segmentation. Firstly, it studies the features of microvascular image and common image segmentation methods, including threshold segmentation, edge detection. Morphological operation and regional growth were used to segment the tail microvessels of goldfish. Secondly, this paper studies sparse representation and dictionary learning theory. Sparse representation theory is widely used in many fields, such as image compression, image denoising and image segmentation. Therefore, based on sparse representation and dictionary learning theory, this paper studies the image segmentation method based on sparse clustering, and establishes an image segmentation model based on sparse subspace clustering. The model uses the Ncut method to divide the image into N superpixels, and then uses the SAC algorithm to calculate the similarity between each superpixel. The coefficient matrix A is obtained by using the similarity matrix, and the adjacent matrix W is constructed by using the coefficient matrix A. finally, the image segmentation results are obtained by using Ncut method to partition the super-pixels. In the last part of this paper, a series of experiments were carried out to collect, transform, fuse and segment the microvascular image with the living African claw frog as the experimental material. Among them, the grayscale transform method is used to convert the collected image into gray image, which is convenient for the further processing of the subsequent computer; the image of microvascular grayscale after conversion is fused by the method of pixel selection and small fusion. The collected discontinuous microvascular images are fused into a complete microvascular image, and a continuous microvascular vein can be clearly seen from the fusion results. Using the block sparse subspace clustering model to segment the image, and comparing the segmentation results with the four commonly used image segmentation methods mentioned above, we can clearly see that, The method used in this paper can segment the microvessels more completely and clearly, and the segmentation effect is better.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R445;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 賈敏;王金甲;李靜;洪文學(xué);;基于輔助訓(xùn)練的半監(jiān)督稀疏表示分類器用于腦電圖分類[J];生物醫(yī)學(xué)工程學(xué)雜志;2014年01期
2 楊亮;陸建峰;;一種基于稀疏表示的腦功能子網(wǎng)絡(luò)構(gòu)建方法[J];計(jì)算機(jī)應(yīng)用研究;2014年09期
3 林溱;;基于稀疏表示的MRI研究簡(jiǎn)介[J];電子世界;2014年09期
4 ;[J];;年期
相關(guān)會(huì)議論文 前3條
1 何愛香;劉玉春;魏廣芬;;基于稀疏表示的煤矸界面識(shí)別研究[A];虛擬運(yùn)營與云計(jì)算——第十八屆全國青年通信學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2013年
2 樊亞翔;孫浩;周石琳;鄒煥新;;基于元樣本稀疏表示的多視角目標(biāo)識(shí)別[A];2013年中國智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第五分冊(cè))[C];2013年
3 葛鳳翔;任歲玲;郭鑫;郭良浩;孫波;;微弱信號(hào)處理及其研究進(jìn)展[A];中國聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2013年全國水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 李進(jìn)明;基于稀疏表示的圖像超分辨率重建方法研究[D];重慶大學(xué);2015年
2 王亞寧;基于信號(hào)稀疏表示的電機(jī)故障診斷研究[D];河北工業(yè)大學(xué);2014年
3 姚明海;視頻異常事件檢測(cè)與認(rèn)證方法研究[D];東北師范大學(xué);2015年
4 黃國華;蛋白質(zhì)翻譯后修飾位點(diǎn)與藥物適應(yīng)癥預(yù)測(cè)方法研究[D];上海大學(xué);2015年
5 王瑾;基于稀疏表示的數(shù)據(jù)收集、復(fù)原與壓縮研究[D];北京工業(yè)大學(xué);2015年
6 王文卿;基于融合框架與稀疏表示的遙感影像銳化[D];西安電子科技大學(xué);2015年
7 解虎;高維小樣本陣列自適應(yīng)信號(hào)處理方法研究[D];西安電子科技大學(xué);2015年
8 秦振濤;基于稀疏表示及字典學(xué)習(xí)遙感圖像處理關(guān)鍵技術(shù)研究[D];成都理工大學(xué);2015年
9 薛明;基于稀疏表示的在線目標(biāo)跟蹤研究[D];上海交通大學(xué);2014年
10 孫樂;空譜聯(lián)合先驗(yàn)的高光譜圖像解混與分類方法[D];南京理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 吳麗璇;基于稀疏表示的微聚焦X射線圖像去噪方法[D];華南理工大學(xué);2015年
2 趙孝磊;基于圖像分塊稀疏表示的人臉識(shí)別算法研究[D];南京信息工程大學(xué);2015年
3 黃志明;基于辨別式稀疏字典學(xué)習(xí)的視覺追蹤算法研究[D];華南理工大學(xué);2015年
4 張鈴華;非約束環(huán)境下的稀疏表示人臉識(shí)別算法研究[D];南京信息工程大學(xué);2015年
5 賀妍斐;基于稀疏表示與自適應(yīng)倒易晶胞的遙感圖像復(fù)原方法研究[D];南京信息工程大學(xué);2015年
6 楊爍;電能質(zhì)量擾動(dòng)信號(hào)的稀疏表示/壓縮采樣研究[D];西南交通大學(xué);2015年
7 應(yīng)艷麗;基于低秩稀疏表示的目標(biāo)跟蹤算法研究[D];西南交通大學(xué);2015年
8 梁曉捷;基于網(wǎng)絡(luò)攝像頭與稀疏表示分類法的實(shí)時(shí)人臉識(shí)別系統(tǒng)應(yīng)用研究[D];五邑大學(xué);2015年
9 張宏樂;語音信號(hào)稀疏表示方法研究[D];太原理工大學(xué);2016年
10 郭欣;基于K-SVD稀疏表示的語音增強(qiáng)算法研究[D];太原理工大學(xué);2016年
,本文編號(hào):2156992
本文鏈接:http://sikaile.net/linchuangyixuelunwen/2156992.html