基于分子印跡技術(shù)與電化學(xué)傳感技術(shù)的結(jié)合與應(yīng)用研究
本文選題:電化學(xué)傳感器 切入點:分子印跡聚合物 出處:《石河子大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本工作將分子印跡技術(shù)(Molecular imprinting techniqu,MIT)與電化學(xué)傳感技術(shù)相結(jié)合,制備了多種分子印跡聚合物(Molecularly imprinted polymer,MIP)修飾的電化學(xué)傳感器,并用于抗菌藥物、生物體內(nèi)源性物質(zhì)和神經(jīng)遞質(zhì)等的檢測工作中,并且深入的對比了分子印跡-電催化反應(yīng)和分子印跡-門效應(yīng)兩種檢測原理,考察了上述兩種檢測方法對于檢測性能的影響。具體工作概述如下:(1)基于不同檢測原理的甲硝唑分子印跡電化學(xué)傳感器的制備和應(yīng)用。以玻碳電極(Glass carbon electrode,GCE)作為工作電極,甲硝唑為模板分子,采用電聚合的方法在GCE表面修飾了MIP。將所制備的甲硝唑電化學(xué)傳感器(MIP/GCE)用于生物樣品中甲硝唑的含量檢測。對聚合過程中的功能單體進行了優(yōu)化,采用循環(huán)伏安法(Cyclic voltammetry,CV)和電化學(xué)阻抗法(Electrochemical impedance spectroscopy,EIS)表征和評估了傳感器的性能。最終本文采用同一個電極,基于兩種不同的檢測原理,完成了對甲硝唑的含量測定工作。兩種檢測方法,一種是基于分子印跡-電催化反應(yīng)的方法(方法Ⅰ),另一種則是基于分子印跡-門效應(yīng)方法(方法Ⅱ)。系統(tǒng)地比較了兩種檢測方法在檢測范圍、靈敏度、精密度、傳感器的選擇性、重復(fù)性和長期穩(wěn)定性等方面的差別。檢測結(jié)果表明,方法Ⅰ具有較低的檢測限,其檢測限為3.33×10-10 mol/L(S/N=3),而方法Ⅱ的檢測限為6.67×10-10 mol/L(S/N=3)。而方法Ⅰ和方法Ⅱ的線性范圍分別為1.0×10-9?1.0×10-8mol/L和2.0×10-9~1.0×10-7 mol/L,方法Ⅱ具有更寬的檢測范圍。最后將兩種方法應(yīng)用于生物樣品中甲硝唑的測定。(2)還原型與氧化型谷胱甘肽分子印跡電化學(xué)傳感器的制備和應(yīng)用。本章以細(xì)胞中還原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)為模板分子,以鄰苯二胺(o-phenylenediamine,o-PD)為功能單體,在金電極表面(Gold electrode,GE)電聚合MIP,分別制備了GSH和GSSG的印跡聚合物修飾的電化學(xué)傳感器(GSH-MIP/GE和GSSG-MIP/GE),用于兩者的含量測定。采用CV和EIS對傳感器的制備過程進行了跟蹤,對傳感性能進行了考察。檢測結(jié)果表明,傳感器對兩種谷胱甘肽在4×10-10 mol/L~2×10-8 mol/L范圍內(nèi)呈現(xiàn)出良好的線性,檢測限均為1.33×10-10 mol/L(S/N=3)。選擇性實驗表明,在有結(jié)構(gòu)類似物或其他干擾物的存在下,傳感器對GSH或GSSG的檢測結(jié)果幾乎沒有變化。隨后將所制備的傳感器應(yīng)用于細(xì)胞樣品中GSH和GSSG的檢測,回收率在92.0~109.1%,與標(biāo)準(zhǔn)檢測方法結(jié)果一致,表明傳感器的結(jié)果準(zhǔn)確可靠。最終用不同濃度的砷化物處理HL-60細(xì)胞后,用傳感器測定了其中GSH和GSSG的含量變化,發(fā)現(xiàn)傳感方法比標(biāo)準(zhǔn)檢測方法更為靈敏,可以給出痕量(nmol/L級別)谷胱甘肽的準(zhǔn)確濃度,比標(biāo)準(zhǔn)方法更具優(yōu)勢。(3)分子印跡和碳納米管/石墨烯泡沫復(fù)合膜修飾的多巴胺電化學(xué)傳感器的制備和應(yīng)用。以3D網(wǎng)狀結(jié)構(gòu)的石墨烯(Graphene foam,GF)與碳納米管(Carbon nanotube,CNT)形成的復(fù)合材料(CNT/GF)作為無支撐的工作電極,在其表面修飾MIP,構(gòu)建多巴胺(Dopamine,DA)分子印跡聚合物修飾的電化學(xué)傳感器(DA-MIP/CNT/GF),用于DA的含量檢測。CNT/GF的制備采用犧牲模板法,以鎳網(wǎng)為模板,在其表面采用等離子體增強化學(xué)氣相沉積法生長GF和CNT,繼而除去鎳網(wǎng)制備而得。隨后在CNT/GF/表面電聚合一層以DA為模板分子的MIP,即完成了MIP/CNT/GF電化學(xué)工作電極的構(gòu)建。通過掃描電子顯微鏡對CNT/GF和鎳骨架進行了形貌表征,采用CV和EIS等方法對復(fù)合電極的制備過程進行了跟蹤,對傳感器的性能進行考察。該復(fù)合電極的突出優(yōu)點有:1)不依賴于商品化的電極,節(jié)約成本;2)擁有三維結(jié)構(gòu)的CNT/GF電極作為MIP的基底具有擴大傳感器表面積的作用,從而提高了電極的靈敏度;3)MIP為整個傳感系統(tǒng)提供了優(yōu)良的分子識別性能,保證了電極的選擇性。檢測結(jié)果表明,DA在2×10-15到1×10-12 mol/L濃度范圍內(nèi)與響應(yīng)電流呈良好的線性關(guān)系,檢測限為6.67×10-16 mol/L(S/N=3)。此外,該傳感器表現(xiàn)出良好的選擇性和抗干擾性,在復(fù)雜樣品中也能準(zhǔn)確檢測目標(biāo)物質(zhì)DA。
[Abstract]:The molecular imprinting technique (Molecular imprinting techniqu, MIT) combined with electrochemical sensor technology, a variety of molecular imprinting polymer was prepared (Molecularly imprinted, polymer, MIP) of electrochemical sensor, and used antibiotics, detection of endogenous substances and neurotransmitters, and in-depth comparison of two kinds of the detection principle of molecular imprinting and electro catalytic reaction and molecular imprinting - door effect, the effects of the two kinds of detection methods for detection performance. The specific work is summarized as follows: (1) Different Molecular Imprinted Electrochemical Sensor metronidazole detection principle, preparation and application. Based on the glassy carbon electrode (Glass carbon, electrode, GCE) as the working electrode, metronidazole as template molecule by electropolymerization on the surface of GCE MIP. modified the electrochemical preparation of metronidazole sensor (MIP/GCE) for students Determination of metronidazole compound in the sample. The polymerization process of functional monomers were optimized by cyclic voltammetry (Cyclic voltammetry, CV) and electrochemical impedance spectroscopy (Electrochemical impedance spectroscopy, EIS) to characterize and evaluate the performance of the sensor. Finally this paper uses the same electrode, two different detection principle based on the complete content of metronidazole determination. Two kinds of detection methods, a method of molecular imprinting and electrocatalytic reactions based on (Fang Fa), the other is the molecular imprinting method based on door effect (method II). Systematic comparison of two methods in the detection range, sensitivity, precision of sensor selectivity, repeatability and long-term stability and other aspects of the difference. The detection results show that the method has low detection limit, the detection limit is 3.33 * 10-10 mol/L (S/N=3), and the detection limit of method 2 is 6. 67 x 10-10 mol/L (S/N=3). The linear range of the method I and method II were 1 x 10-9? 1 * 10-8mol/L and 2 * 10-9~1.0 * 10-7 mol/L, with a wider range of detection methods II. Finally, two methods are applied to the determination of metronidazole in biological samples. (2) preparation and Application the prototype and oxidative glutathione Molecularly Imprinted Electrochemical sensor system. In this chapter, cellular glutathione (GSH) and oxidized glutathione (GSSG) as the template molecule, with adjacent benzene two amines (o-phenylenediamine, o-PD) as the functional monomer on the surface of the gold electrode (Gold electrode GE) Electropolymer MIP were prepared by the electrochemical sensor imprinted polymer modified GSH and GSSG's (GSH-MIP/GE and GSSG-MIP/GE), for the determination of the content of the preparation process. By using CV and EIS to the sensor system for tracking, the sensing performance of the inspection. The detection results show that the sensor To exhibit good linearity of two glutathione in 4 * 10-10 mol/L~2 * 10-8 mol/L range, the detection limit is 1.33 * 10-10 mol/L (S/N=3). Selective experiments show that in structural analogues or other interventions in the presence of GSH or GSSG sensor detection results almost no change. Then detection for sensor applications prepared in GSH and GSSG cells in the sample, the recovery rate was 92.0~109.1%. The results were consistent with the standard detection methods indicates that the sensor is accurate and reliable. Finally with different concentrations of arsenic in HL-60 cells after treatment, the GSH and GSSG content were measured by the sensor, found the sensing method than the standard the detection method is more sensitive, can be given trace (nmol/L level) accurate concentration of glutathione, has more advantage than the standard method. (3) dopamine molecular imprinting and carbon nanotubes / graphene composite film modified foam The preparation and application of chemical sensor system. The graphene 3D mesh structure (Graphene foam, GF) and carbon nanotubes (Carbon nanotube, CNT) composite formation (CNT/GF) as a working electrode without support, modification of MIP on the surface of dopamine (Dopamine, DA) to construct electrochemical sensor with molecular imprinted polymer modified (DA-MIP/CNT/GF), for measuring the content of.CNT/GF DA were prepared by sacrificial template method with nickel net as a template, on the surface by plasma enhanced chemical vapor deposition growth of GF and CNT, and then remove the nickel net prepared. Then a layer of polymerization using DA as template molecule on the surface of CNT/GF/ electric MIP that is, we constructed MIP/CNT/GF electrochemical working electrode. By scanning electron microscopy of CNT/GF and nickel skeleton were morphology characterization by CV and EIS methods of preparation process of composite electrode was tracked, the sensor of Can inspect. Advantages of the composite electrode are: 1) does not depend on the electrode in the commercialization of cost savings; 2) CNT/GF has a three-dimensional structure of the electrode as the MIP substrate has expanded sensor surface area, so as to improve the sensitivity of the electrodes; 3) MIP provides excellent performance for the molecular recognition the sensing system, to ensure the selectivity of the electrode. The detection results show that the DA in the 2 * 10-15 to 1 * 10-12 mol/L concentration range and response showed a good linear relationship between the current and the detection limit is 6.67 * 10-16 mol/L (S/N=3). In addition, the sensor exhibited good selectivity and anti-interference, can accurately detect the target material DA. in complex samples
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212.3;R446.1
【參考文獻】
相關(guān)期刊論文 前10條
1 苗智穎;念陳;邵學(xué)廣;陳強;;基于多壁碳納米管-鉑納米顆粒納米復(fù)合材料的乙醇生物傳感器[J];傳感技術(shù)學(xué)報;2017年01期
2 劉江;劉媛;李迎春;唐輝;吳冰冰;;兩步蒸餾沉淀聚合法制備紅霉素表面分子印跡聚合物及其性能研究[J];高分子學(xué)報;2014年12期
3 胡穎;李南忘;張帆;程圭芳;何品剛;方禹之;;一種基于電化學(xué)檢測的新型水質(zhì)綜合評價方法[J];環(huán)境科學(xué)與技術(shù);2014年S2期
4 李文進;劉霞;李蓉卓;李蕾;;電化學(xué)傳感器在農(nóng)藥殘留檢測中的研究進展[J];食品與機械;2013年04期
5 常艷兵;周朝本;;GO/CHIT復(fù)合物修飾的電化學(xué)傳感器對土壤中鎘和鉛的同時測定[J];曲靖師范學(xué)院學(xué)報;2013年03期
6 段語暉;衛(wèi)引茂;;基于新型硼酸固相萃取柱的多巴胺色譜分析方法[J];分析化學(xué);2013年03期
7 吐爾洪·買買提;阿不都克熱木·卡地爾;哈麗丹·買買提;尼魯帕爾·阿不都克尤木;;替代模板法制備甲硝唑分子印跡聚合物及其在血清樣品固相萃取中的應(yīng)用[J];分析化學(xué);2011年12期
8 王宗花;郭新美;夏建飛;張菲菲;夏延致;李延輝;;基于納米材料電化學(xué)生物傳感器的研究進展[J];分析測試學(xué)報;2011年11期
9 范銘;;甲硝唑致不良反應(yīng)文獻分析[J];中國藥房;2011年44期
10 欒崇林;李銘杰;李仲謹(jǐn);蘇秀霞;蔣曉華;;分子印跡電化學(xué)傳感器的研究進展[J];化工進展;2011年02期
相關(guān)博士學(xué)位論文 前6條
1 崔敏;基于納米材料的電化學(xué)傳感器及其應(yīng)用研究[D];北京理工大學(xué);2014年
2 王東方;基于功能化納米材料的生物傳感器設(shè)計及在生物醫(yī)學(xué)中的應(yīng)用[D];中國科學(xué)院研究生院(上海應(yīng)用物理研究所);2014年
3 張博;石墨烯納米電極的制備及其電化學(xué)研究[D];武漢大學(xué);2014年
4 鐘霞;幾種復(fù)合納米材料的合成及其在葡萄糖生物傳感器中的應(yīng)用研究[D];西南大學(xué);2013年
5 劉燦;電化學(xué)傳感器檢測堆肥微生物及幾種典型環(huán)境污染物的研究[D];湖南大學(xué);2012年
6 楊微微;以氧化還原蛋白質(zhì)或酶為基礎(chǔ)的電流型生物傳感器的研究[D];吉林大學(xué);2008年
相關(guān)碩士學(xué)位論文 前8條
1 劉媛;幾種納米復(fù)合材料的制備及其在電化學(xué)傳感器中的應(yīng)用[D];石河子大學(xué);2015年
2 路璐;基于DNAzymes構(gòu)建電化學(xué)生物傳感器檢測生物小分子[D];西南大學(xué);2014年
3 阿斯古麗·麥麥提;分子印跡—熒光猝滅方法的建立及甲硝唑等藥物的分析應(yīng)用[D];新疆大學(xué);2013年
4 柏雨辰;基于普魯士藍納米粒子修飾炭糊電極的電位型免疫傳感器[D];遼寧師范大學(xué);2013年
5 錢俊;基于電化學(xué)的微生物傳感器對水體急性生物毒性的檢測分析[D];吉首大學(xué);2013年
6 陳巍林;基于植物組織的酚電化學(xué)傳感器研究[D];揚州大學(xué);2010年
7 王秋花;基于電化學(xué)傳感器的多組分氣體濃度檢測儀[D];西安理工大學(xué);2010年
8 譚蕓;電化學(xué)免疫傳感器用于黃曲霉毒素和蛋白質(zhì)檢測的研究[D];湖南大學(xué);2009年
,本文編號:1649726
本文鏈接:http://sikaile.net/linchuangyixuelunwen/1649726.html