Kinect在肢殘者運(yùn)動(dòng)姿態(tài)識(shí)別中的應(yīng)用及有效性研究
本文關(guān)鍵詞: Kinect V VICON 姿態(tài) 靜態(tài) 動(dòng)態(tài) 出處:《中國康復(fù)醫(yī)學(xué)雜志》2017年02期 論文類型:期刊論文
【摘要】:目的:比較Kinect是否能替代傳統(tǒng)運(yùn)動(dòng)捕捉設(shè)備用于肢殘者運(yùn)動(dòng)姿態(tài)研究。方法:將30例受試者分成兩組分別在Kinect與VICON運(yùn)動(dòng)捕捉系統(tǒng)下進(jìn)行實(shí)驗(yàn),并對(duì)各組數(shù)據(jù)進(jìn)行預(yù)處理,利用皮爾遜系數(shù)相關(guān)法,驗(yàn)證兩組受試者各個(gè)關(guān)節(jié)角之間的相關(guān)性,對(duì)各關(guān)節(jié)角相關(guān)性強(qiáng)度進(jìn)行評(píng)定。結(jié)果:關(guān)聯(lián)性較高的數(shù)據(jù)為矢狀面數(shù)據(jù),髖、膝、背曲、腰部屈伸等關(guān)節(jié)V-K(VICON與Kinect)數(shù)據(jù)相關(guān)性最高(r0.7)。假肢者的姿態(tài)識(shí)別中V-K相關(guān)性系數(shù)低于健體者(r2r1)。假肢者的髖、膝、背曲等關(guān)節(jié)相關(guān)性系數(shù)差異不大,健體者與假肢者的肘關(guān)節(jié)數(shù)據(jù)相關(guān)性系數(shù)差異性較大。結(jié)論:Kinect替代VICON需從采集的關(guān)節(jié)角的映射面、任務(wù)及被試者三方面考慮,在人體矢狀面、任務(wù)過程中有較少自遮擋關(guān)節(jié)點(diǎn)、被試者能夠自由完成規(guī)定任務(wù)動(dòng)作情況下,Kinect可以作為有效替代工具研究人體姿態(tài)識(shí)別。
[Abstract]:Objective: to compare whether Kinect can replace the traditional motion capture equipment for the study of motion posture of limb disabled patients. Methods: 30 subjects were divided into two groups to carry out the experiment under the Kinect and VICON motion capture system, and the data of each group were preprocessed. Pearson coefficient correlation method was used to verify the correlation between each joint angle of the two groups and evaluate the correlation strength of each joint angle. Results: the higher correlation data were sagittal plane data, hip, knee, dorsal curvature, The correlation coefficient of V-K correlation coefficient in posture recognition of prosthetic limb was lower than that in healthy person. The correlation coefficient of hip, knee and dorsal flexion of prosthesis was not different from that of the prosthetic joint, such as hip, knee, dorsal curvature, and so on, the correlation coefficient of V-K and Kinect was the highest in the lumbar flexion and extension joints, and the correlation coefficient of V-K was lower than that of the healthy person. The correlation coefficient of elbow joint data between the healthy and the prosthetic is quite different. Conclusion the mapping surface of the joint angle, the task and the subjects need to be considered in terms of the mapping surface of the joint angle, the task and the subjects. There are fewer self-occlusion nodes in the sagittal plane of the human body and in the course of the task. Kinect can be used as an effective alternative to human posture recognition.
【作者單位】: 華中科技大學(xué)機(jī)械科學(xué)與工程學(xué)院;
【基金】:國家自然科學(xué)基金項(xiàng)目(71301057) 上海航天科技創(chuàng)新基金項(xiàng)目(SAST201409)
【分類號(hào)】:C913.69;R496
【相似文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前10條
1 鄭中華;基于肢體動(dòng)作的人體姿態(tài)識(shí)別研究[D];西安工業(yè)大學(xué);2015年
2 趙婷;動(dòng)態(tài)目標(biāo)姿態(tài)識(shí)別技術(shù)研究[D];沈陽理工大學(xué);2015年
3 周博翔;基于加速度傳感器的人體運(yùn)動(dòng)姿態(tài)識(shí)別[D];長沙理工大學(xué);2014年
4 張承璽;固定場景下的人體姿態(tài)識(shí)別[D];哈爾濱工業(yè)大學(xué);2014年
5 黎琳;3D人體模型的語義結(jié)構(gòu)提取與姿態(tài)識(shí)別[D];遼寧師范大學(xué);2015年
6 商業(yè);基于BP神經(jīng)網(wǎng)絡(luò)的老年人姿態(tài)識(shí)別算法研究[D];東北大學(xué);2014年
7 王健;基于PHOW特征的人臉姿態(tài)識(shí)別算法研究[D];山東財(cái)經(jīng)大學(xué);2016年
8 劉嘉楠;基于手部姿態(tài)識(shí)別的數(shù)字皮影系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];北京林業(yè)大學(xué);2016年
9 王璐;基于無線體域網(wǎng)的人體姿態(tài)識(shí)別算法研究[D];吉林大學(xué);2016年
10 胡國媛;高速小目標(biāo)飛行姿態(tài)識(shí)別與控制技術(shù)研究[D];電子科技大學(xué);2016年
,本文編號(hào):1514495
本文鏈接:http://sikaile.net/linchuangyixuelunwen/1514495.html