聯(lián)合第2版前列腺影像報告與數(shù)據(jù)系統(tǒng)評分與前列腺特異性抗原的Logistic回歸預(yù)測模型診斷移行區(qū)前列腺癌
本文關(guān)鍵詞:聯(lián)合第2版前列腺影像報告與數(shù)據(jù)系統(tǒng)評分與前列腺特異性抗原的Logistic回歸預(yù)測模型診斷移行區(qū)前列腺癌 出處:《中國醫(yī)學(xué)影像技術(shù)》2017年07期 論文類型:期刊論文
更多相關(guān)文章: 前列腺影像報告和數(shù)據(jù)系統(tǒng)第版 Logistic回歸模型 前列腺腫瘤 前列腺特異性抗原
【摘要】:目的建立第2版前列腺影像報告和數(shù)據(jù)系統(tǒng)(PI-RADS v2)評分聯(lián)合前列腺特異性抗原(PSA)的Logistic回歸預(yù)測模型,評價其對移行區(qū)前列腺癌(PCa)的診斷價值。方法回顧性分析經(jīng)病理證實的移行區(qū)前列腺腺癌(PCa組,n=33)和良性前列腺增生或前列腺炎(非PCa組,n=54)患者的術(shù)前MRI及PSA資料。采用PI-RADS v2對2組進行評分(由低至高評為1~5分)。分析2組的PI-RADS v2評分、總PSA(t-PSA)、游離PSA(f-PSA)與t-PSA比值(fPSA/t-PSA)及PSA密度(PSAD)的差異,選擇有統(tǒng)計學(xué)意義的指標為自變量,以病理結(jié)果是否為PCa為因變量,建立3項Logistic回歸模型:PI-RADS v2+t-PSA(A);PI-RADS v2+f-PSA/t-PSA(B);PI-RADS v2+PSAD(C)。建立Logistic回歸模型產(chǎn)生的Logit(P)和PI-RADS v2評分的ROC曲線,評估其診斷效能。結(jié)果 2組t-PSA、f-PSA/t-PSA、PSAD及PI-RADS v2評分差異均有統(tǒng)計學(xué)意義(P均0.01)。A、B、C Logistic回歸預(yù)測模型分別為:Logit(P)=-8.682+1.507PI-RADS v2+0.234t-PSA(χ~2=65.993,P0.01);Logit(P)=-5.425+1.906PI-RADS v2-13.921f-PSA/t-PSA(χ~2=65.993,P0.01);Logit(P)=-7.534+1.045PI-RADS v2+13.318PSAD(χ~2=74.036,P0.01)。以A、B、C模型產(chǎn)生的Logit(P)預(yù)測病理結(jié)果,其ROC曲線下面積分別為0.945、0.919、0.960,均高于單獨使用PI-RADS v2評分(AUC為0.861),差異有統(tǒng)計學(xué)意義(P均0.01)。其中C模型診斷效能最佳,其敏感度、特異度分別為87.88%、92.59%。單獨使用PI-RADS v2評分的敏感度、特異度分別為87.88%、77.78%。結(jié)論聯(lián)合PI-RADS v2評分和PSA指標的Logistic回歸預(yù)測模型對移行區(qū)PCa的診斷效能優(yōu)于單獨使用PI-RADS v2評分,為可疑移行區(qū)PCa患者行穿刺活檢提供了可靠的依據(jù)。
[Abstract]:Objective to establish the second edition of prostate imaging reporting and data system (PI-RADS V2) was combined with prostate specific antigen (PSA) of the Logistic regression model, the evaluation of prostate cancer (PCa) diagnostic value. Methods a retrospective analysis of pathologically confirmed prostate adenocarcinoma (PCa group, n=33) benign prostatic hyperplasia and prostatitis (or non PCa group, n=54) in patients with preoperative MRI and PSA data. The PI-RADS V2 score of 2 groups (from low to high rated 1~5). Analysis of 2 groups of PI-RADS V2 score, total PSA (t-PSA), free PSA (f-PSA) and t-PSA ratio (fPSA/t-PSA the density of PSA (PSAD)) and the difference was statistically significant to select indicators as independent variables, with the pathological results is PCa as the dependent variable, establish 3 Logistic regression model: PI-RADS v2+t-PSA (A); PI-RADS v2+f-PSA/t-PSA (B); PI-RADS v2+PSAD (C). Logistic regression model was established to produce Lo Git (P) ROC curve and PI-RADS V2 score, to assess its diagnostic performance. The results of 2 groups of t-PSA, f-PSA/t-PSA, PSAD and PI-RADS V2 score differences were statistically significant (P 0.01).A, B, C and Logistic regression model were: Logit (P) =-8.682+1.507PI-RADS v2+ 0.234t-PSA (~2=65.993, P0.01); Logit (P) =-5.425+1.906PI-RADS v2-13.921f-PSA/t-PSA (~2=65.993, P0.01); Logit (P) =-7.534+1.045PI-RADS v2+13.318PSAD (~2=74.036, P0.01). In A, B, C model Logit (P) prediction of pathological results, the area under the curve of ROC 0.945,0.919,0.960 respectively, were higher than that of PI-RADS alone V2 score (AUC = 0.861), the difference was statistically significant (P < 0.01). The diagnostic efficacy of C model, the sensitivity and specificity were 87.88%, 92.59%. used alone PI-RADS V2 score of sensitivity and specificity were 87.88%, 77.78%. conclusion: the combination of PI-RADS and V2 score The Logistic regression prediction model with PSA index is superior to the PI-RADS V2 score in the diagnosis of PCa in the transitional zone, which provides a reliable basis for biopsy in the suspected migrating area PCa patients.
【作者單位】: 南方醫(yī)科大學(xué)南方醫(yī)院影像中心;
【分類號】:R445.2;R737.25
【正文快照】: 組,n=33)和良性前列腺增生或前列腺炎(非PCa組,n=54)患者的術(shù)前MRI及PSA資料。采用PI-RADS v2對2組進行評分(由低至高評為1~5分)。分析2組的PI-RADS v2評分、總PSA(t-PSA)、游離PSA(f-PSA)與t-PSA比值(f-PSA/t-PSA)及PSA密度(PSAD)的差異,選擇有統(tǒng)計學(xué)意義的指標為自變量,以病
【相似文獻】
相關(guān)期刊論文 前1條
1 張朝元;陳麗;;一種新的支持向量回歸預(yù)測模型[J];大理學(xué)院學(xué)報;2007年06期
相關(guān)會議論文 前2條
1 羅本家;曹炳元;;含T-Fuzzy數(shù)據(jù)的回歸預(yù)測模型及其在石油地質(zhì)企業(yè)管理中的應(yīng)用[A];數(shù)學(xué)及其應(yīng)用文集——中南模糊數(shù)學(xué)和系統(tǒng)分會第三屆年會論文集(上卷)[C];1995年
2 呂效國;;自回歸預(yù)測模型參數(shù)的“折扣”最小二乘估計及其應(yīng)用[A];江蘇省現(xiàn)場統(tǒng)計研究會第11次學(xué)術(shù)年會論文集[C];2008年
相關(guān)碩士學(xué)位論文 前2條
1 解超;電力行業(yè)煤炭需求分析及預(yù)測[D];華北電力大學(xué);2015年
2 雷振興;煤礦安全事故的分類和預(yù)測研究[D];西安理工大學(xué);2010年
,本文編號:1380306
本文鏈接:http://sikaile.net/linchuangyixuelunwen/1380306.html