高光譜圖像處理與信息提取前沿
本文關鍵詞:高光譜圖像處理與信息提取前沿
更多相關文章: 高光譜遙感 數據降維 混合像元分解 圖像分類 目標探測 高性能計算
【摘要】:高光譜遙感是對地觀測的重要手段,高光譜圖像處理與信息提取技術則是高光譜遙感領域的核心研究內容之一。本文簡要介紹了高光譜遙感的主要特點,系統(tǒng)梳理了高光譜圖像處理與信息提取面臨的關鍵問題和主要研究方向,在此基礎上,從噪聲評估與數據降維方法、混合像元分解方法、圖像分類方法、目標探測與異常探測方法等4個方面對高光譜圖像處理與信息提取的理論發(fā)展過程和最新前沿進展進行了綜述。另外,還對高光譜圖像處理與信息提取中的高性能處理技術進行了總結和分析。未來,伴隨著智能化信息分析和高性能硬件處理技術發(fā)展,高光譜遙感衛(wèi)星系統(tǒng)也將步入智能化時代。針對這一趨勢,本文指出高光譜圖像處理與信息提取方法要注重多學科交叉,充分利用機器學習、人工智能等領域的新成果;要重視軟硬件結合,發(fā)展高光譜圖像高性能實時處理技術;要緊密結合應用需求,發(fā)揮高光譜遙感的優(yōu)勢和特點,發(fā)展新理論和新方法。
【作者單位】: 中國科學院遙感與數字地球研究所數字地球重點實驗室;
【關鍵詞】: 高光譜遙感 數據降維 混合像元分解 圖像分類 目標探測 高性能計算
【基金】:國家杰出青年科學基金(編號:41325004)~~
【分類號】:TP751
【正文快照】: 引用格式:張兵.2016.高光譜圖像處理與信息提取前沿.遙感學報,20(5):1062 1090Zhang B.2016.Advancement of hyperspectral image processing and information extraction.Journal of Remote高光譜遙感(hyperspectral remote sensing)又叫成像光譜遙感,是將成像技術和光譜技
【相似文獻】
中國期刊全文數據庫 前10條
1 諶德榮;宮久路;陳乾;曹旭平;;基于樣本分割的快速高光譜圖像異常檢測支持向量數據描述方法[J];兵工學報;2008年09期
2 蒲曉豐;雷武虎;張林虎;蔣奇材;;基于Fukunaga-Koontz變換的高光譜圖像異常檢測[J];紅外技術;2010年04期
3 成寶芝;郭宗光;;高光譜圖像波段間相關特性研究[J];大慶師范學院學報;2013年06期
4 楊龍;易宏杰;李因彥;;遙感高光譜圖像赤潮識別[J];傳感器世界;2007年05期
5 汪倩;陶鵬;;結合空間信息的高光譜圖像快速分類方法[J];微計算機信息;2010年21期
6 王立國;孫杰;肖倩;;結合空-譜信息的高光譜圖像分類方法[J];黑龍江大學自然科學學報;2010年06期
7 馮朝麗;朱啟兵;朱曉;黃敏;;基于光譜特征的玉米品種高光譜圖像識別[J];江南大學學報(自然科學版);2012年02期
8 付歡;龍海南;韓曉霞;;基于冗余字典的高光譜圖像的稀疏分解[J];河北軟件職業(yè)技術學院學報;2013年04期
9 耿修瑞,張霞,陳正超,張兵,鄭蘭芬,童慶禧;一種基于空間連續(xù)性的高光譜圖像分類方法[J];紅外與毫米波學報;2004年04期
10 張綺瑋;機載高光譜遙感圖像處理軟件系統(tǒng)[J];紅外;2005年02期
中國重要會議論文全文數據庫 前10條
1 張兵;王向偉;鄭蘭芬;童慶禧;;高光譜圖像地物分類與識別研究[A];成像光譜技術與應用研討會論文集[C];2004年
2 高連如;張兵;孫旭;李山山;張文娟;;高光譜數據降維與分類技術研究[A];第八屆成像光譜技術與應用研討會暨交叉學科論壇文集[C];2010年
3 王成;何偉基;陳錢;;基于波段重組和小波變換的高光譜圖像嵌入式壓縮方法[A];黑龍江、江蘇、山東、河南、江西 五省光學(激光)聯(lián)合學術‘13年會論文(摘要)集[C];2013年
4 孫蕾;羅建書;;基于分類預測的高光譜遙感圖像無損壓縮[A];第一屆建立和諧人機環(huán)境聯(lián)合學術會議(HHME2005)論文集[C];2005年
5 楊勇;劉木華;鄒小蓮;苗蓬勃;趙珍珍;;基于高光譜圖像技術的獼猴桃硬度品質檢測[A];走中國特色農業(yè)機械化道路——中國農業(yè)機械學會2008年學術年會論文集(下冊)[C];2008年
6 張曉紅;張立福;王晉年;童慶禧;;HJ-1A衛(wèi)星高光譜遙感圖像質量綜合評價[A];第八屆成像光譜技術與應用研討會暨交叉學科論壇文集[C];2010年
7 高東生;高連知;;基于獨立分量分析的高光譜圖像目標盲探測方法研究[A];國家安全地球物理叢書(八)——遙感地球物理與國家安全[C];2012年
8 馮維一;陳錢;何偉基;;基于小波稀疏的高光譜目標探測算法[A];黑龍江、江蘇、山東、河南、江西 五省光學(激光)聯(lián)合學術‘13年會論文(摘要)集[C];2013年
9 彭妮娜;易維寧;方勇華;;基于核函數的高光譜圖像信息提取研究[A];光子科技創(chuàng)新與產業(yè)化——長三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年
10 蒲曉豐;雷武虎;黃濤;王迪;;基于穩(wěn)健背景子空間的高光譜圖像異常檢測[A];中國光學學會2010年光學大會論文集[C];2010年
中國博士學位論文全文數據庫 前10條
1 普晗曄;高光譜遙感圖像的解混理論和方法研究[D];復旦大學;2014年
2 王亮亮;非線性流形結構在高光譜圖像異常檢測中的應用研究[D];國防科學技術大學;2014年
3 賀智;改進的經驗模態(tài)分解算法及其在高光譜圖像分類中的應用[D];哈爾濱工業(yè)大學;2014年
4 魏然;基于成像機理分析的高光譜圖像信息恢復研究[D];哈爾濱工業(yè)大學;2015年
5 葉珍;高光譜圖像特征提取與分類算法研究[D];西北工業(yè)大學;2015年
6 馮婕;基于軟計算和互信息理論的遙感圖像地物分類[D];西安電子科技大學;2014年
7 孫濤;快速多核學習分類研究及應用[D];西安電子科技大學;2015年
8 李昌國;基于譜間和校正相關性的高光譜圖像壓縮方法研究及GPU并行實現[D];成都理工大學;2015年
9 徐速;基于壓縮感知的高光譜圖像稀疏解混方法研究[D];重慶大學;2015年
10 南一冰;星載推掃型高光譜運動成像誤差建模與高精度校正技術研究[D];北京理工大學;2015年
中國碩士學位論文全文數據庫 前10條
1 豐爍;高光譜圖像波段選取問題的改進算法研究[D];昆明理工大學;2015年
2 趙偉彥;果蔬干燥過程中的品質無損檢測技術研究[D];江南大學;2015年
3 馬亞楠;果蔬中內部害蟲的高光譜圖像檢測技術研究[D];江南大學;2015年
4 劉大洋;基于近紅外光譜和高光譜圖像技術無損識別獼猴桃膨大果[D];西北農林科技大學;2015年
5 王坤;高光譜圖像異常目標檢測及光譜成像在偽裝評估方面的應用研究[D];南京理工大學;2015年
6 王啟聰;高光譜圖像分類的GPU并行優(yōu)化研究[D];南京理工大學;2015年
7 程凱;無先驗信息的高光譜圖像小目標檢測算法研究[D];蘇州大學;2015年
8 李秩期;基于高光譜及多信息融合的馬鈴薯外部缺陷無損檢測研究[D];寧夏大學;2015年
9 王健;基于高光譜圖像的馬鈴薯形狀及重量分類識別建模研究[D];寧夏大學;2015年
10 吳蓓芬;偏振高光譜圖像場景仿真及分類方法研究[D];哈爾濱工業(yè)大學;2015年
,本文編號:987786
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/987786.html