天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于密度背景純化的高光譜異常檢測(cè)算法

發(fā)布時(shí)間:2017-06-09 04:01

  本文關(guān)鍵詞:基于密度背景純化的高光譜異常檢測(cè)算法,由筆耕文化傳播整理發(fā)布。


【摘要】:在高光譜圖像異常檢測(cè)中,背景存在異常像元會(huì)造成背景統(tǒng)計(jì)信息失真,這將導(dǎo)致檢測(cè)結(jié)果具有較高的虛警率。針對(duì)此問(wèn)題,本文提出了一種基于密度背景純化的異常檢測(cè)算法。首先計(jì)算背景中每個(gè)像元的密度;然后根據(jù)高光譜圖像中背景密度遠(yuǎn)大于異常密度的特性,利用最大類間方差法將異常從背景中分離;最后,將純化后的背景用于統(tǒng)計(jì)信息的估計(jì),通過(guò)RX檢測(cè)算法(Reed-Xiaoli detector,RXD)對(duì)高光譜圖像進(jìn)行檢測(cè)。為驗(yàn)證算法的有效性,利用兩組真實(shí)的高光譜數(shù)據(jù)進(jìn)行仿真實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明與RXD比,所提算法在兩組數(shù)據(jù)下的曲線下面積值分別提高了0.024 6和0.008 6。與當(dāng)前的異常檢測(cè)算法相比:所提算法有較好的接收機(jī)工作特性曲線。
【作者單位】: 哈爾濱工程大學(xué)信息與通信工程學(xué)院;
【關(guān)鍵詞】高光譜圖像 遙感 異常檢測(cè) 密度 純化 RX檢測(cè)算法 最大類間方差法 接收機(jī)工作特性
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(61571145;61601135) 黑龍江省自然科學(xué)基金項(xiàng)目(ZD201216) 哈爾濱市優(yōu)秀學(xué)科帶頭人基金項(xiàng)目(RC2013XK0 09003) 中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)基金項(xiàng)目(GK2080260139)
【分類號(hào)】:TP751
【正文快照】: 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20160928.0936.038.html高光譜圖像是一種圖譜合一的新型遙感數(shù)據(jù),具有很高的光譜分辨率。借助其豐富的光譜信息,可以通過(guò)目標(biāo)檢測(cè)或異常檢測(cè)算法識(shí)別高光譜圖像中的低概率地物。異常檢測(cè)在目標(biāo)先驗(yàn)知識(shí)未知的情況下,

【相似文獻(xiàn)】

中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條

1 諶德榮;宮久路;陳乾;曹旭平;;基于樣本分割的快速高光譜圖像異常檢測(cè)支持向量數(shù)據(jù)描述方法[J];兵工學(xué)報(bào);2008年09期

2 蒲曉豐;雷武虎;張林虎;蔣奇材;;基于Fukunaga-Koontz變換的高光譜圖像異常檢測(cè)[J];紅外技術(shù);2010年04期

3 成寶芝;郭宗光;;高光譜圖像波段間相關(guān)特性研究[J];大慶師范學(xué)院學(xué)報(bào);2013年06期

4 楊龍;易宏杰;李因彥;;遙感高光譜圖像赤潮識(shí)別[J];傳感器世界;2007年05期

5 汪倩;陶鵬;;結(jié)合空間信息的高光譜圖像快速分類方法[J];微計(jì)算機(jī)信息;2010年21期

6 王立國(guó);孫杰;肖倩;;結(jié)合空-譜信息的高光譜圖像分類方法[J];黑龍江大學(xué)自然科學(xué)學(xué)報(bào);2010年06期

7 馮朝麗;朱啟兵;朱曉;黃敏;;基于光譜特征的玉米品種高光譜圖像識(shí)別[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期

8 付歡;龍海南;韓曉霞;;基于冗余字典的高光譜圖像的稀疏分解[J];河北軟件職業(yè)技術(shù)學(xué)院學(xué)報(bào);2013年04期

9 耿修瑞,張霞,陳正超,張兵,鄭蘭芬,童慶禧;一種基于空間連續(xù)性的高光譜圖像分類方法[J];紅外與毫米波學(xué)報(bào);2004年04期

10 張綺瑋;機(jī)載高光譜遙感圖像處理軟件系統(tǒng)[J];紅外;2005年02期

中國(guó)重要會(huì)議論文全文數(shù)據(jù)庫(kù) 前10條

1 張兵;王向偉;鄭蘭芬;童慶禧;;高光譜圖像地物分類與識(shí)別研究[A];成像光譜技術(shù)與應(yīng)用研討會(huì)論文集[C];2004年

2 高連如;張兵;孫旭;李山山;張文娟;;高光譜數(shù)據(jù)降維與分類技術(shù)研究[A];第八屆成像光譜技術(shù)與應(yīng)用研討會(huì)暨交叉學(xué)科論壇文集[C];2010年

3 王成;何偉基;陳錢;;基于波段重組和小波變換的高光譜圖像嵌入式壓縮方法[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會(huì)論文(摘要)集[C];2013年

4 孫蕾;羅建書;;基于分類預(yù)測(cè)的高光譜遙感圖像無(wú)損壓縮[A];第一屆建立和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2005)論文集[C];2005年

5 楊勇;劉木華;鄒小蓮;苗蓬勃;趙珍珍;;基于高光譜圖像技術(shù)的獼猴桃硬度品質(zhì)檢測(cè)[A];走中國(guó)特色農(nóng)業(yè)機(jī)械化道路——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)2008年學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2008年

6 張曉紅;張立福;王晉年;童慶禧;;HJ-1A衛(wèi)星高光譜遙感圖像質(zhì)量綜合評(píng)價(jià)[A];第八屆成像光譜技術(shù)與應(yīng)用研討會(huì)暨交叉學(xué)科論壇文集[C];2010年

7 高東生;高連知;;基于獨(dú)立分量分析的高光譜圖像目標(biāo)盲探測(cè)方法研究[A];國(guó)家安全地球物理叢書(八)——遙感地球物理與國(guó)家安全[C];2012年

8 馮維一;陳錢;何偉基;;基于小波稀疏的高光譜目標(biāo)探測(cè)算法[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會(huì)論文(摘要)集[C];2013年

9 彭妮娜;易維寧;方勇華;;基于核函數(shù)的高光譜圖像信息提取研究[A];光子科技創(chuàng)新與產(chǎn)業(yè)化——長(zhǎng)三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年

10 蒲曉豐;雷武虎;黃濤;王迪;;基于穩(wěn)健背景子空間的高光譜圖像異常檢測(cè)[A];中國(guó)光學(xué)學(xué)會(huì)2010年光學(xué)大會(huì)論文集[C];2010年

中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條

1 普晗曄;高光譜遙感圖像的解混理論和方法研究[D];復(fù)旦大學(xué);2014年

2 王亮亮;非線性流形結(jié)構(gòu)在高光譜圖像異常檢測(cè)中的應(yīng)用研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年

3 賀智;改進(jìn)的經(jīng)驗(yàn)?zāi)B(tài)分解算法及其在高光譜圖像分類中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2014年

4 魏然;基于成像機(jī)理分析的高光譜圖像信息恢復(fù)研究[D];哈爾濱工業(yè)大學(xué);2015年

5 葉珍;高光譜圖像特征提取與分類算法研究[D];西北工業(yè)大學(xué);2015年

6 馮婕;基于軟計(jì)算和互信息理論的遙感圖像地物分類[D];西安電子科技大學(xué);2014年

7 孫濤;快速多核學(xué)習(xí)分類研究及應(yīng)用[D];西安電子科技大學(xué);2015年

8 李昌國(guó);基于譜間和校正相關(guān)性的高光譜圖像壓縮方法研究及GPU并行實(shí)現(xiàn)[D];成都理工大學(xué);2015年

9 徐速;基于壓縮感知的高光譜圖像稀疏解混方法研究[D];重慶大學(xué);2015年

10 南一冰;星載推掃型高光譜運(yùn)動(dòng)成像誤差建模與高精度校正技術(shù)研究[D];北京理工大學(xué);2015年

中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條

1 豐爍;高光譜圖像波段選取問(wèn)題的改進(jìn)算法研究[D];昆明理工大學(xué);2015年

2 趙偉彥;果蔬干燥過(guò)程中的品質(zhì)無(wú)損檢測(cè)技術(shù)研究[D];江南大學(xué);2015年

3 馬亞楠;果蔬中內(nèi)部害蟲的高光譜圖像檢測(cè)技術(shù)研究[D];江南大學(xué);2015年

4 劉大洋;基于近紅外光譜和高光譜圖像技術(shù)無(wú)損識(shí)別獼猴桃膨大果[D];西北農(nóng)林科技大學(xué);2015年

5 王坤;高光譜圖像異常目標(biāo)檢測(cè)及光譜成像在偽裝評(píng)估方面的應(yīng)用研究[D];南京理工大學(xué);2015年

6 王啟聰;高光譜圖像分類的GPU并行優(yōu)化研究[D];南京理工大學(xué);2015年

7 程凱;無(wú)先驗(yàn)信息的高光譜圖像小目標(biāo)檢測(cè)算法研究[D];蘇州大學(xué);2015年

8 李秩期;基于高光譜及多信息融合的馬鈴薯外部缺陷無(wú)損檢測(cè)研究[D];寧夏大學(xué);2015年

9 王健;基于高光譜圖像的馬鈴薯形狀及重量分類識(shí)別建模研究[D];寧夏大學(xué);2015年

10 吳蓓芬;偏振高光譜圖像場(chǎng)景仿真及分類方法研究[D];哈爾濱工業(yè)大學(xué);2015年


  本文關(guān)鍵詞:基于密度背景純化的高光譜異常檢測(cè)算法,,由筆耕文化傳播整理發(fā)布。



本文編號(hào):434345

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/434345.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e44bd***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com