多智能體編隊控制的新圖論方法
發(fā)布時間:2021-09-07 10:18
多智能體系統(tǒng)的分布式協(xié)同控制在現(xiàn)實中具有非常多的潛在應用。與單個智能體執(zhí)行任務相比,成群智能體的協(xié)作具有更高的效率以及可調(diào)控性。近年來,分布式編隊控制,作為分布式協(xié)同控制中非常重要的一類問題,已經(jīng)被廣泛的討論和研究,并取得了一系列突破性的成果,但仍有一些關(guān)鍵的問題沒有被解決。在這篇博士論文中,我們提出兩種新的圖論工.具,并將它們應用于分布式編隊控制中。與已有的文獻相比,我們提出的編隊控制策略具有一些明顯的優(yōu)勢,為提升編隊性能提供了新的視角。我們的工作可以總結(jié)為以下幾點。1.我們提出“弱剛性理論”來研究一個幾何圖形的形狀是否可以由圖中一些成對相對位移的內(nèi)積來唯一確定。與已有的距離剛性和方位剛性相比,弱剛性在確定一個任意維空間中幾何圖形的形狀時,需要邊的數(shù)量更少。在已有文獻中,一個圖形是否剛性一般是通過計算剛性矩陣的秩來檢測。因此,對于具有很多節(jié)點的大型編隊,計算復雜度會很高。在我們的工作中,我們推導出了平面上圖形是無窮小弱剛性圖的充要圖條件,利用這個條件,我們可以很容易檢測任意一個平面圖形是否是無窮小弱剛性的。之后我們將弱剛性理論應用在了多智能體編隊中,針對一群單積分器智能體,我們提出了...
【文章來源】:西安電子科技大學陜西省 211工程院校 教育部直屬院校
【文章頁數(shù)】:130 頁
【學位級別】:博士
【文章目錄】:
ABSTRACT
摘要
List of Symbols
List of Abbreviations
Chapter 1 Introduction
1.1 Background of Multi-Agent Systems
1.2 Formation Control
1.2.1 Background and Motivation
1.2.2 Literature Review
1.2.3 Unsolved Problems
1.3 Organization and Contribution of the Thesis
Chapter 2 Preliminaries
2.1 Graph Theory
2.2 Graph Rigidity Theory
2.2.1 Distance Rigidity Theory
2.2.2 Bearing Rigidity Theory
2.3 Center Manifold Theory
2.4 Formation Shape Stabilization
2.4.1 Displacement-based Formation Control
2.4.2 Bearing-based Formation Control
2.4.3 Distance-based Formation Control
2.5 Practicality of Gradient Systems
2.5.1 Connection to Double-Integrator Systems
2.5.2 Connection to Non-Holonomic Systems
Chapter 3 Weak Rigidity Theory
3.1 Weak Rigidity
3.1.1 Definitions Associated with Weak Rigidity
3.1.2 Construction of a Minimal Constraint Set
3.1.3 Comparisons Between Rigidity and Weak Rigidity
3.1.4 A Matrix Completion Perspective
3.1.5 Generic Property
3.2 Application to Formation Control
3.2.1 Control Objective
3.2.2 A Steepest Descent Formation Controller
3.2.3 Stability Analysis
3.2.4 Formation Control Under Non-Rigid Graphs
3.3 Simulation Examples
3.4 Summary
Chapter 4 Angle Rigidity Theory
4.1 Angle Rigidity
4.1.1 The Relation to Bearing Rigidity
4.1.2 Construction of Angle Constraint Set for Rigidity
4.1.3 Frameworks Uniquely Determined by Angles
4.2 Application to Formation Control
4.2.1 The Formation Stabilization Problem
4.2.2 A Steepest Descent Formation Controller
4.2.3 Stability Analysis
4.2.4 Orientation and Scale Control
4.2.5 Simulation Examples
4.3 Summary
Chapter 5 Angle-based Formation Control with Almost Global Convergence
5.1 Stationary Angle-based Formation Stabilization
5.1.1 An Artificial Potential Function
5.1.2 A Steepest Descent Formation Controller
5.1.3 Stability Analysis
5.1.4 Sign of Triangulated Frameworks
5.1.5 Analysis for Collision Avoidance
5.1.6 A Simulation Example
5.2 Dynamic Angle-based Formation Stabilization
5.2.1 Agent Dynamics and Sensing Capability
5.2.2 Flocking with a Desired Formation Shape
5.2.3 A Distributed Formation Stabilization Controller
5.2.4 Stability Analysis
5.2.5 A Simulation Example
5.3 Dynamic Angle-based Formation with a Leader
5.3.1 The Formation Law and Its Properties
5.3.2 Stability Analysis
5.3.3 A Simulation Example
5.4 Summary
Chapter 6 Conclusion and Future Work
6.1 Summary of Contributions
6.2 Future Works
References
Acknowledgement
Biography
本文編號:3389368
【文章來源】:西安電子科技大學陜西省 211工程院校 教育部直屬院校
【文章頁數(shù)】:130 頁
【學位級別】:博士
【文章目錄】:
ABSTRACT
摘要
List of Symbols
List of Abbreviations
Chapter 1 Introduction
1.1 Background of Multi-Agent Systems
1.2 Formation Control
1.2.1 Background and Motivation
1.2.2 Literature Review
1.2.3 Unsolved Problems
1.3 Organization and Contribution of the Thesis
Chapter 2 Preliminaries
2.1 Graph Theory
2.2 Graph Rigidity Theory
2.2.1 Distance Rigidity Theory
2.2.2 Bearing Rigidity Theory
2.3 Center Manifold Theory
2.4 Formation Shape Stabilization
2.4.1 Displacement-based Formation Control
2.4.2 Bearing-based Formation Control
2.4.3 Distance-based Formation Control
2.5 Practicality of Gradient Systems
2.5.1 Connection to Double-Integrator Systems
2.5.2 Connection to Non-Holonomic Systems
Chapter 3 Weak Rigidity Theory
3.1 Weak Rigidity
3.1.1 Definitions Associated with Weak Rigidity
3.1.2 Construction of a Minimal Constraint Set
3.1.3 Comparisons Between Rigidity and Weak Rigidity
3.1.4 A Matrix Completion Perspective
3.1.5 Generic Property
3.2 Application to Formation Control
3.2.1 Control Objective
3.2.2 A Steepest Descent Formation Controller
3.2.3 Stability Analysis
3.2.4 Formation Control Under Non-Rigid Graphs
3.3 Simulation Examples
3.4 Summary
Chapter 4 Angle Rigidity Theory
4.1 Angle Rigidity
4.1.1 The Relation to Bearing Rigidity
4.1.2 Construction of Angle Constraint Set for Rigidity
4.1.3 Frameworks Uniquely Determined by Angles
4.2 Application to Formation Control
4.2.1 The Formation Stabilization Problem
4.2.2 A Steepest Descent Formation Controller
4.2.3 Stability Analysis
4.2.4 Orientation and Scale Control
4.2.5 Simulation Examples
4.3 Summary
Chapter 5 Angle-based Formation Control with Almost Global Convergence
5.1 Stationary Angle-based Formation Stabilization
5.1.1 An Artificial Potential Function
5.1.2 A Steepest Descent Formation Controller
5.1.3 Stability Analysis
5.1.4 Sign of Triangulated Frameworks
5.1.5 Analysis for Collision Avoidance
5.1.6 A Simulation Example
5.2 Dynamic Angle-based Formation Stabilization
5.2.1 Agent Dynamics and Sensing Capability
5.2.2 Flocking with a Desired Formation Shape
5.2.3 A Distributed Formation Stabilization Controller
5.2.4 Stability Analysis
5.2.5 A Simulation Example
5.3 Dynamic Angle-based Formation with a Leader
5.3.1 The Formation Law and Its Properties
5.3.2 Stability Analysis
5.3.3 A Simulation Example
5.4 Summary
Chapter 6 Conclusion and Future Work
6.1 Summary of Contributions
6.2 Future Works
References
Acknowledgement
Biography
本文編號:3389368
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/3389368.html
最近更新
教材專著