邊信道攻擊和學習向量量化(英文)
發(fā)布時間:2021-04-09 22:29
盡管加密算法已得到改進,加密系統(tǒng)的安全性仍然是密碼系統(tǒng)設計者關(guān)注的重點。邊信道攻擊可利用加密系統(tǒng)的物理漏洞來獲取秘密信息。目前提出的多種邊信道信息分析方法中,機器學習被認為是一種有前景的方法。基于神經(jīng)網(wǎng)絡的機器學習可獲得指令標志(功耗與電磁輻射),并自動識別。本文對橢圓曲線加密(Elliptic curve cryptography,ECC)的現(xiàn)場可編程門陣列(field-programmable gate array,FPGA)實現(xiàn)展開了新的實驗研究,探討了基于學習向量量化(Learning vector quantization,LVQ)神經(jīng)網(wǎng)絡的邊信道信息表征的效率。LVQ作為多類分類器的主要特點是它具有學習復雜非線性輸入-輸出關(guān)系、使用順序訓練程序和適應數(shù)據(jù)的能力。實驗結(jié)果表明基于LVQ的多類分類是邊信道數(shù)據(jù)表征的強大且有前景的方法。
【文章來源】:Frontiers of Information Technology & Electronic Engineering. 2017,18(04)EISCICSCD
【文章頁數(shù)】:9 頁
【文章目錄】:
1 Introduction
2 Neural networks as multi-class classi-?ers
2.1 Side-channel attacks based on neural net-works
3 Multi-class classi?cation based on learning vector quantization
3.1 Learning vector quantization algorithm
4 Experimental results based on learn-ing vector quantization
4.1 Experimental setup
4.2 Empirical results and discussions
5 Conclusions
【參考文獻】:
期刊論文
[1]一套具備使用者不可追蹤性的輕量化身分鑒別機制(英文)[J]. Kuo-Hui YEH. Frontiers of Information Technology & Electronic Engineering. 2015(04)
本文編號:3128426
【文章來源】:Frontiers of Information Technology & Electronic Engineering. 2017,18(04)EISCICSCD
【文章頁數(shù)】:9 頁
【文章目錄】:
1 Introduction
2 Neural networks as multi-class classi-?ers
2.1 Side-channel attacks based on neural net-works
3 Multi-class classi?cation based on learning vector quantization
3.1 Learning vector quantization algorithm
4 Experimental results based on learn-ing vector quantization
4.1 Experimental setup
4.2 Empirical results and discussions
5 Conclusions
【參考文獻】:
期刊論文
[1]一套具備使用者不可追蹤性的輕量化身分鑒別機制(英文)[J]. Kuo-Hui YEH. Frontiers of Information Technology & Electronic Engineering. 2015(04)
本文編號:3128426
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/3128426.html
最近更新
教材專著