多尺度仿生游動(dòng)機(jī)器人的研究
發(fā)布時(shí)間:2021-01-31 17:52
仿生游動(dòng)機(jī)器人憑借其卓越的性能應(yīng)用于多種領(lǐng)域,極大的引起了研究者的廣泛關(guān)注。在宏觀尺度,國(guó)家海洋資源在經(jīng)濟(jì)發(fā)展和全球戰(zhàn)略地位方面扮演著重要角色。目前對(duì)于水下海洋資源的探索主要依靠傳統(tǒng)的螺旋槳推進(jìn)方式,該推進(jìn)方式技術(shù)成熟,推進(jìn)速度較快,但也存在著諸如推進(jìn)效率低、機(jī)動(dòng)性能差、體積龐大、對(duì)環(huán)境擾動(dòng)大,以及制造和維護(hù)費(fèi)用高等缺陷。在微觀尺度,無(wú)線的微型機(jī)器人在多種生物醫(yī)學(xué)應(yīng)用中表現(xiàn)出顯著的潛力,例如微創(chuàng)診斷、藥物運(yùn)載、功能性細(xì)胞傳輸以及醫(yī)學(xué)組織工程等。盡管一些微型機(jī)器人為此已被研發(fā)出來,但新穎可靠的微型機(jī)器人仍值得探索擴(kuò)展。游動(dòng)生物歷經(jīng)了數(shù)百萬(wàn)年的進(jìn)化和自然選擇已具備了卓越的身體機(jī)理和非凡的游動(dòng)性能,以應(yīng)對(duì)其復(fù)雜多變的生存環(huán)境。因此,模仿它們的推進(jìn)機(jī)理和結(jié)構(gòu)形態(tài)為機(jī)器人的設(shè)計(jì)和控制方法等提供了重要的思路和可能性。在本論文中,對(duì)宏觀和微觀尺度的兩種仿生游動(dòng)機(jī)器人進(jìn)行了研究和展示。本論文分為以下兩部分。在第一部分,介紹了一款采用耦合了擺動(dòng)推進(jìn)和射流推進(jìn)機(jī)制的仿生機(jī)器魚。該機(jī)器魚采用了雙尾鰭推進(jìn)結(jié)構(gòu),兩個(gè)尾鰭平行地安裝在機(jī)器魚的尾部,并且尾鰭的形狀是仿照具有優(yōu)異加速性能的比目魚的尾鰭形狀。雙尾鰭的對(duì)...
【文章來源】:中國(guó)科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:136 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Statement of the Problems
1.3 Research Objectives
1.4 Methodology and Significance
1.5 Conclusion
Chapter 2 Literature Review
2.1 Introduction
2.2 Fish Swimming Mechanisms
2.3 Typical Bioinspired Swimming Robots on the Macroscale
2.4 Propulsive Mechanisms of Microrobots
2.4.1 Chemical Propulsion
2.4.2 Biological Propulsion
2.4.3 Optical Propulsion
2.4.4 Electrical Propulsion
2.4.5 Acoustic Propulsion
2.4.6 Magnetic Propulsion
2.5 Magnetic Actuation Methods
2.5.1 Magnetic Materials
2.5.2 Magnetic Actuation Principle
2.5.3 Magnetic Fields
2.6 Microrobot Fabrication
2.7 Conclusion
Chapter 3 A Dual Caudal-fin Robotic Fish with an Integrated Oscillatory and Jet Propulsion
3.1 Introduction
3.2 Design of Robotic Fish
3.3 Integrated Propulsion of Dual Caudal Fins
3.4 Characterization Analysis of Dual Caudal-fin Mechanism
3.4.1 Numerical Model
3.4.2 Dynamic Analysis
3.4.3 Forces
3.5 Swimming Performance of Robotic Fish
3.5.1 Experimental Setup
3.5.2 Swimming Speed with Dual Caudal Fins
3.5.3 Swimming Speed with a Single Caudal Fin
3.5.4 Maneuvers with Dual Caudal Fins
3.6 Conclusion
Chapter 4 A Magnetically Driven Undulatory Microswimmer with Multiple Rigid Segments
4.1 Introduction
4.2 Design of Microswimmer
4.3 Fabrication and Characteristics of the Microswimmer
4.3.1 Experimental Setup
4.3.2 Fabrication Process
4.3.3 Scanning Electron Microscopy (SEM)
4.3.4 Energy-dispersive Spectrometry (EDS)
4.4 Actuation of the Microswimmer
4.4.1 Magnetic Actuation Principles
4.4.2 Magnetic Actuation System
4.4.3 Control Strategy
4.5 Characterization Analysis of the Microswimmer
4.5.1 Theoretical Model Analysis
4.5.2 Hydrodynamic Analysis
4.6 Swimming Experiments on the Microsiwmmer
4.6.1 Experimental Preparation
4.6.2 Oscillation Tests of the Magnetic Segment
4.6.3 Undulation of the Microswimmer
4.6.4 Swimming Speeds of the Microswimmer
4.6.5 Navigation of the Microswimmer
4.6.6 Justification for Swimming
4.7 Conclusion
Chapter 5 Conclusion and Future Work
5.1 Conclusion
5.2 Future Work
References
Appendix
Acknowledgements
本文編號(hào):3011325
【文章來源】:中國(guó)科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁(yè)數(shù)】:136 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Statement of the Problems
1.3 Research Objectives
1.4 Methodology and Significance
1.5 Conclusion
Chapter 2 Literature Review
2.1 Introduction
2.2 Fish Swimming Mechanisms
2.3 Typical Bioinspired Swimming Robots on the Macroscale
2.4 Propulsive Mechanisms of Microrobots
2.4.1 Chemical Propulsion
2.4.2 Biological Propulsion
2.4.3 Optical Propulsion
2.4.4 Electrical Propulsion
2.4.5 Acoustic Propulsion
2.4.6 Magnetic Propulsion
2.5 Magnetic Actuation Methods
2.5.1 Magnetic Materials
2.5.2 Magnetic Actuation Principle
2.5.3 Magnetic Fields
2.6 Microrobot Fabrication
2.7 Conclusion
Chapter 3 A Dual Caudal-fin Robotic Fish with an Integrated Oscillatory and Jet Propulsion
3.1 Introduction
3.2 Design of Robotic Fish
3.3 Integrated Propulsion of Dual Caudal Fins
3.4 Characterization Analysis of Dual Caudal-fin Mechanism
3.4.1 Numerical Model
3.4.2 Dynamic Analysis
3.4.3 Forces
3.5 Swimming Performance of Robotic Fish
3.5.1 Experimental Setup
3.5.2 Swimming Speed with Dual Caudal Fins
3.5.3 Swimming Speed with a Single Caudal Fin
3.5.4 Maneuvers with Dual Caudal Fins
3.6 Conclusion
Chapter 4 A Magnetically Driven Undulatory Microswimmer with Multiple Rigid Segments
4.1 Introduction
4.2 Design of Microswimmer
4.3 Fabrication and Characteristics of the Microswimmer
4.3.1 Experimental Setup
4.3.2 Fabrication Process
4.3.3 Scanning Electron Microscopy (SEM)
4.3.4 Energy-dispersive Spectrometry (EDS)
4.4 Actuation of the Microswimmer
4.4.1 Magnetic Actuation Principles
4.4.2 Magnetic Actuation System
4.4.3 Control Strategy
4.5 Characterization Analysis of the Microswimmer
4.5.1 Theoretical Model Analysis
4.5.2 Hydrodynamic Analysis
4.6 Swimming Experiments on the Microsiwmmer
4.6.1 Experimental Preparation
4.6.2 Oscillation Tests of the Magnetic Segment
4.6.3 Undulation of the Microswimmer
4.6.4 Swimming Speeds of the Microswimmer
4.6.5 Navigation of the Microswimmer
4.6.6 Justification for Swimming
4.7 Conclusion
Chapter 5 Conclusion and Future Work
5.1 Conclusion
5.2 Future Work
References
Appendix
Acknowledgements
本文編號(hào):3011325
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/3011325.html
最近更新
教材專著