面向目標(biāo)跟蹤的DELTA機(jī)器人控制方法研究
發(fā)布時(shí)間:2021-01-27 12:42
近年來并聯(lián)Delta機(jī)器人運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)研究受到越來越多的關(guān)注。為構(gòu)建不受人類干擾的,具有完成所需任務(wù)能力的自動(dòng)控制系統(tǒng),需要建立它的運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)和運(yùn)動(dòng)控制模型。在處理機(jī)器人(尤其是串行結(jié)構(gòu)的機(jī)器人)時(shí),自主操作是一個(gè)非常普遍問題,研究人員對(duì)其給予了極大的關(guān)注,以使其成為全自動(dòng)機(jī)器人,并具有在不同情況下不要與人類互動(dòng)便可以做出決定的能力。但對(duì)并行Delta機(jī)器人而言相關(guān)研究相對(duì)較少。本文針對(duì)這一并聯(lián)機(jī)器人系統(tǒng)的精度、剛度的提高和改進(jìn)問題,并試圖增加其智能化程度。本文挖掘并聯(lián)Delta機(jī)器人的潛力,使它每分鐘可以執(zhí)行200個(gè)操作周期,可用于檢查PCB板的工業(yè)生產(chǎn)線中的產(chǎn)品,PCB要求短時(shí)間內(nèi)進(jìn)行測(cè)試數(shù)百萬個(gè)電子元器件。為在這種并聯(lián)Delta機(jī)器人上增加目標(biāo)檢測(cè)和跟蹤功能,擴(kuò)大其使用范圍,首先開展了末端執(zhí)行器的運(yùn)動(dòng)學(xué)分析,尋找一種并聯(lián)Delta機(jī)器人自動(dòng)系統(tǒng)適用的運(yùn)動(dòng)學(xué)控制方法。在對(duì)系統(tǒng)建模中,多體系統(tǒng)(MBS)建模是使控制算法考慮系統(tǒng)所有組成物體的一種運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)方法。本文將MBS建模和目標(biāo)檢測(cè)結(jié)合起來實(shí)現(xiàn)了并聯(lián)Delta機(jī)器人的自主跟蹤。為獲取和處理攝像機(jī)視頻信號(hào)中的非結(jié)構(gòu)化運(yùn)動(dòng)目...
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:67 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
List of symbols
Chapter 1 Introduction
1.1 The Background
1.2 Introduction of Robots
1.2.1 Two Kinematic Types Robots
1.2.2 Advantages of Parallel Robots Over Serial Robots
1.2.3 Other Industrial Robots` Structures
1.2.4 Object Tracking and Gripping
1.3 Research Significance
1.4 Related Research and Literature Review Analysis
1.4.1 Literature Review
1.4.2 Literature Review Analysis
1.5 Main Content of Research
1.5.1 Research Objectives
1.5.2 Research Contents and Research Plan
1.6 Research Contribution
Chapter 2 Methodology and Mathematical Background
2.1 Multibody systems
2.2 Advantages of MBS approaches
2.3 Spatial transformation of rigid bodies
2.3.1 Angle of rotation and rotation axis technique
2.3.2 Rotations about triad orthogonal axes techniques
2.3.3 DH parameters
2.3.4 Comparative analysis between different methodologies
2.3.5 Position of a generalized vector in space
2.3.6 Euler parameters and Euler angles
2.4 Angular velocity in terms of Euler angles
2.5 Spatial kinematic analysis
2.5.1 Degrees of freedom
2.5.2 Generalized coordinates
2.5.3 Kinematic constraints
2.5.4 Spherical and revolute joints modeling
2.6 Summary
Chapter 3 Delta Robot Model and Simulation
3.1 System parameters assignment
3.2 Delta robot model simplification
3.3 MBS model parameters of the D3S-800 delta robot
3.3.1 Parameters of revolute joints
3.3.2 Parameters of spherical joints
3.4 FLARM constraints and driving constraints
3.5 Constraints equations and Jacobian matrix
3.6 Exact instantaneous dependent coordinates calculations
3.7 Simplified MBS model analysis and verification
3.8 Error sources in the simplified MBS model
3.9 Summary
Chapter 4 Object Detection and Tracking
4.1 Introduction
4.2 Problems associated to object tracking algorithms
4.2.1 Variations of the moving object appearance
4.2.2 Illumination, shadow and occlusion problems
4.2.3 Presence of abrupt motion
4.2.4 Surveillance Camera related problems
4.3 Methods of objects classification
4.4 Methods of moving objects detection
4.4.1 Background modeling and subtraction algorithm
4.4.2 Trajectory path compensation methods
4.4.3 Object tracking methods
4.5 Summary
Conclusion
結(jié)論
References
ACKNOWLEDGEMENT
Appendix 1: Matlab subroutine to calculate the Jacobian Cqd
arm, φFA and ψFA">Appendix 2: Matlab subroutine to calculate ψarm, φFA and ψFA
本文編號(hào):3003064
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:67 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
List of symbols
Chapter 1 Introduction
1.1 The Background
1.2 Introduction of Robots
1.2.1 Two Kinematic Types Robots
1.2.2 Advantages of Parallel Robots Over Serial Robots
1.2.3 Other Industrial Robots` Structures
1.2.4 Object Tracking and Gripping
1.3 Research Significance
1.4 Related Research and Literature Review Analysis
1.4.1 Literature Review
1.4.2 Literature Review Analysis
1.5 Main Content of Research
1.5.1 Research Objectives
1.5.2 Research Contents and Research Plan
1.6 Research Contribution
Chapter 2 Methodology and Mathematical Background
2.1 Multibody systems
2.2 Advantages of MBS approaches
2.3 Spatial transformation of rigid bodies
2.3.1 Angle of rotation and rotation axis technique
2.3.2 Rotations about triad orthogonal axes techniques
2.3.3 DH parameters
2.3.4 Comparative analysis between different methodologies
2.3.5 Position of a generalized vector in space
2.3.6 Euler parameters and Euler angles
2.4 Angular velocity in terms of Euler angles
2.5 Spatial kinematic analysis
2.5.1 Degrees of freedom
2.5.2 Generalized coordinates
2.5.3 Kinematic constraints
2.5.4 Spherical and revolute joints modeling
2.6 Summary
Chapter 3 Delta Robot Model and Simulation
3.1 System parameters assignment
3.2 Delta robot model simplification
3.3 MBS model parameters of the D3S-800 delta robot
3.3.1 Parameters of revolute joints
3.3.2 Parameters of spherical joints
3.4 FLARM constraints and driving constraints
3.5 Constraints equations and Jacobian matrix
3.6 Exact instantaneous dependent coordinates calculations
3.7 Simplified MBS model analysis and verification
3.8 Error sources in the simplified MBS model
3.9 Summary
Chapter 4 Object Detection and Tracking
4.1 Introduction
4.2 Problems associated to object tracking algorithms
4.2.1 Variations of the moving object appearance
4.2.2 Illumination, shadow and occlusion problems
4.2.3 Presence of abrupt motion
4.2.4 Surveillance Camera related problems
4.3 Methods of objects classification
4.4 Methods of moving objects detection
4.4.1 Background modeling and subtraction algorithm
4.4.2 Trajectory path compensation methods
4.4.3 Object tracking methods
4.5 Summary
Conclusion
結(jié)論
References
ACKNOWLEDGEMENT
Appendix 1: Matlab subroutine to calculate the Jacobian Cqd
arm, φFA and ψFA">Appendix 2: Matlab subroutine to calculate ψarm, φFA and ψFA
本文編號(hào):3003064
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/3003064.html
最近更新
教材專著