基于雷達(dá)觀測的目標(biāo)跟蹤與評估系統(tǒng)
發(fā)布時(shí)間:2021-01-23 17:11
多目標(biāo)跟蹤是指在傳感器獲取的帶有噪聲的測量基礎(chǔ)上,建立被監(jiān)測的多個(gè)目標(biāo)的軌跡的過程。多目標(biāo)跟蹤對于軍隊(duì)以及民用監(jiān)視具有重要的實(shí)際意義。多目標(biāo)跟蹤的戰(zhàn)略目標(biāo)是從獲得的數(shù)據(jù)中追蹤目標(biāo),這涉及到眾多特別復(fù)雜的因素,例如跟蹤目標(biāo)的數(shù)量可變,傳感器噪聲,錯(cuò)誤的警報(bào)以及數(shù)據(jù)關(guān)聯(lián)的不確定性等。針對這些問題,本文選用概率假設(shè)密度濾波器作為核心方法,研究實(shí)現(xiàn)了以該濾波器為基礎(chǔ)的多種狀態(tài)估計(jì)算法。勢概率假設(shè)密度濾波器也被認(rèn)為是解決方案之一,但它比PHD濾波器在計(jì)算上更為復(fù)雜。同樣地,我們也在本文中實(shí)現(xiàn)了針對該濾波器的狀態(tài)估計(jì)。在概率假設(shè)密度濾波的實(shí)現(xiàn)方面,本文采用了粒子濾波實(shí)現(xiàn)的SMC-PHD濾波器,因?yàn)樗軌蚺c非線性和非高斯動(dòng)力學(xué)聯(lián)系在一起。之后,本文主要對四種狀態(tài)估計(jì)方法進(jìn)行了研究和對比。在多目標(biāo)軌跡評估方面,本文使用OSPA以獲得最佳軌跡集合距離,以評估兩個(gè)軌跡集合的相似程度。最后,本文將上述算法研究集成于基于雷達(dá)傳感器的目標(biāo)跟蹤演示系統(tǒng)中,以提供可視化的多目標(biāo)跟蹤結(jié)果和算法性能的多角度評估。
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:79 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Literature review
1.2.1 Target tracking
1.2.2 Radar tracking
1.2.3 Tracking performance evaluation
1.3 Main content
Chapter 2 Multiple target trajectory evaluation
2.1 Hausdorff metric for Multi-Object trajectories
2.2 Optimal Mass Transfer (OMAT) metric
2.3 Evaluation metric (OSPA)
2.4 Chapter summary
Chapter 3 Multi-target tracking based on Random Finite Sets filtering
3.1 The Probability Hypothesis Density filter
3.2 Implementing of the PHD Filter
3.3 The Cardinalized PHD (CPHD) filter
3.3.1 Performing the CPHD estimation
3.3.2 Computational Complexity of the CPHD Filter
3.4 Simulation results and analysis
3.5 Chapter Summary
Chapter 4 Multi-target state estimation
4.1 Weight component of particles
4.2 Multi-target state estimation methods
4.2.1 ZHAO method
4.2.2 Ristic method
4.2.3 MEAP estimator
4.2.4 EAP estimator
4.2.5 K-means algorithm
4.3 Chapter Summary
Chapter 5 System design and implementation
5.1 General structure of the system
5.2 The GUI application
5.3 The simulation settings
5.4 Radar simulation
5.4.1 Radar parameters
5.4.2 Radar control
5.5 Chapter summary
Conclusion
結(jié)論
References
Acknowledgements
【參考文獻(xiàn)】:
期刊論文
[1]A measurement-driven adaptive probability hypothesis density filter for multitarget tracking[J]. Si Weijian,Wang Liwei,Qu Zhiyu. Chinese Journal of Aeronautics. 2015(06)
本文編號:2995593
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:79 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background
1.2 Literature review
1.2.1 Target tracking
1.2.2 Radar tracking
1.2.3 Tracking performance evaluation
1.3 Main content
Chapter 2 Multiple target trajectory evaluation
2.1 Hausdorff metric for Multi-Object trajectories
2.2 Optimal Mass Transfer (OMAT) metric
2.3 Evaluation metric (OSPA)
2.4 Chapter summary
Chapter 3 Multi-target tracking based on Random Finite Sets filtering
3.1 The Probability Hypothesis Density filter
3.2 Implementing of the PHD Filter
3.3 The Cardinalized PHD (CPHD) filter
3.3.1 Performing the CPHD estimation
3.3.2 Computational Complexity of the CPHD Filter
3.4 Simulation results and analysis
3.5 Chapter Summary
Chapter 4 Multi-target state estimation
4.1 Weight component of particles
4.2 Multi-target state estimation methods
4.2.1 ZHAO method
4.2.2 Ristic method
4.2.3 MEAP estimator
4.2.4 EAP estimator
4.2.5 K-means algorithm
4.3 Chapter Summary
Chapter 5 System design and implementation
5.1 General structure of the system
5.2 The GUI application
5.3 The simulation settings
5.4 Radar simulation
5.4.1 Radar parameters
5.4.2 Radar control
5.5 Chapter summary
Conclusion
結(jié)論
References
Acknowledgements
【參考文獻(xiàn)】:
期刊論文
[1]A measurement-driven adaptive probability hypothesis density filter for multitarget tracking[J]. Si Weijian,Wang Liwei,Qu Zhiyu. Chinese Journal of Aeronautics. 2015(06)
本文編號:2995593
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2995593.html
最近更新
教材專著