lncRNA基因調(diào)控關(guān)系的分析與預(yù)測(cè)
發(fā)布時(shí)間:2021-01-12 10:19
研究表明,每種非編碼RNA(ncRNA)不僅可以通過其靶基因起作用,而且可以彼此相互作用以作用影響于生物學(xué)性狀,并且這種相互作用更常見。許多研究主要集中在微小RNA(miRNA)和信使RNA(mRNA)相互作用的分析上。本研究中,提出了兩個(gè)獨(dú)立的模型來分析和預(yù)測(cè)lncRNA基因調(diào)控關(guān)系。第一個(gè)模型基于傳統(tǒng)支持向量回歸(SVR),第二類模型基于深度集成學(xué)習(xí)。在第一個(gè)模型中,使用SVR研究了擬南芥miRNA和長非編碼RNA(lncRNA)相互作用,模型可以識(shí)別出新的相互作用并分析在脅迫響應(yīng)下的調(diào)節(jié)作用。構(gòu)建并分析了miRNAmRNA,miRNA-lncRNA和miRNA-mRNA-lncRNA的互作網(wǎng)絡(luò)。我們發(fā)現(xiàn)具有低序列號(hào)的miRNA,具有高序列號(hào)的靶向lncRNA和具有高序列號(hào)的miRNA靶向具有低序列號(hào)的lncRNA。實(shí)驗(yàn)結(jié)果表明miRNA-lncRNA之間存在調(diào)節(jié)關(guān)系。使用具有新基因表達(dá)機(jī)制的SVR預(yù)測(cè)新RNA靶標(biāo),并標(biāo)注了脅迫響應(yīng)相關(guān)功能。在第二個(gè)模型中,我們使用長短期記憶自動(dòng)編碼器(LSTM-AE)在相同的數(shù)據(jù)集上研究了miRNA-lncRNA序列的相互作用。實(shí)驗(yàn)結(jié)果表明,方法...
【文章來源】:大連理工大學(xué)遼寧省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:48 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
摘要
1 Introduction
1.1 Related Work and significance
1.2 Domestic and Overseas Progress
1.3 Research Content and methodology
1.4 Objectives
1.5 Key Problems solved
2 Methods for Predicting lncRNA-gene Regulatory Relationship
2.1 SVR Based on Traditional SVM
2.1.1 Target Prediction with psRNATarget and TAPIR
2.1.2 RNAs Network Construction
2.1.3 SVR
2.2 LSTM-AE Based on Ensemble Deep Learning
2.2.1 RNA Feature Encoding
2.2.2 Dimensionality Reduction with Auto-Encoders
2.2.3 Data Partitioning:Training,Validation,and Test Sets
2.2.4 LSTM
2.2.5 Stacked LSTM
3 Results
3.1 SVR Based on Traditional SVM
3.1.1 Network Analysis
3.1.2 SVR Approach to Predict miRNA targeting lncRNA
3.1.3 Identifying Regulatory Rules with Stress Response
3.2 LSTM-AE Based on Ensemble Deep Learning
3.2.1 Generating Negative Samples from the Positive Samples
3.2.2 Evaluation of Performance
3.2.3 LSTM-AE
3.3 Comparison of Deep Learning LSTM-AE with Traditional SVR
Conclusion
References
Research Projects and Publications in Master Study
Acknowledgement
本文編號(hào):2972679
【文章來源】:大連理工大學(xué)遼寧省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:48 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
Abstract
摘要
1 Introduction
1.1 Related Work and significance
1.2 Domestic and Overseas Progress
1.3 Research Content and methodology
1.4 Objectives
1.5 Key Problems solved
2 Methods for Predicting lncRNA-gene Regulatory Relationship
2.1 SVR Based on Traditional SVM
2.1.1 Target Prediction with psRNATarget and TAPIR
2.1.2 RNAs Network Construction
2.1.3 SVR
2.2 LSTM-AE Based on Ensemble Deep Learning
2.2.1 RNA Feature Encoding
2.2.2 Dimensionality Reduction with Auto-Encoders
2.2.3 Data Partitioning:Training,Validation,and Test Sets
2.2.4 LSTM
2.2.5 Stacked LSTM
3 Results
3.1 SVR Based on Traditional SVM
3.1.1 Network Analysis
3.1.2 SVR Approach to Predict miRNA targeting lncRNA
3.1.3 Identifying Regulatory Rules with Stress Response
3.2 LSTM-AE Based on Ensemble Deep Learning
3.2.1 Generating Negative Samples from the Positive Samples
3.2.2 Evaluation of Performance
3.2.3 LSTM-AE
3.3 Comparison of Deep Learning LSTM-AE with Traditional SVR
Conclusion
References
Research Projects and Publications in Master Study
Acknowledgement
本文編號(hào):2972679
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2972679.html
最近更新
教材專著