智能水滴算法優(yōu)化SVM的光伏最大功率跟蹤研究
文內(nèi)圖片:
圖片說(shuō)明:光伏電池仿真模型
[Abstract]:The continuous exploitation and use of fossil energy has a serious impact on the ecological environment. In order to better protect the ecological environment of the earth, it is urgent to use green energy and renewable energy to achieve sustainable development. Solar energy is a kind of clean energy which is favored by people and has a broad development prospect. Photovoltaic power generation, as the main way to develop solar energy, has the advantages of safety and reliability, flexible application form, simple installation and maintenance, and so on. However, there are some problems in photovoltaic power generation, such as low power conversion rate and high cost. The maximum power tracking control algorithm (MPPT), which is widely used at present, is an important means to improve its conversion efficiency. Firstly, the research background, significance and methods and techniques of photovoltaic power generation output prediction are introduced. Then the output characteristics of photovoltaic cells are analyzed, and the necessity and importance of MPPT are introduced. Then, a new swarm intelligent algorithm, intelligent water drop algorithm (Intelligent Water Drops,IWD), is introduced, which is originally proposed for discrete optimization problem, and the optimization of SVM parameters is a continuous optimization problem. At the same time, the traditional intelligent water drop algorithm is prone to stagnation and blocking in node selection. In view of the above problems, the traditional intelligent water drop algorithm is improved, and then the improved intelligent water droplet algorithm is tested by using the traditional standard algorithm to optimize the test function, and the results are compared with the traditional ant colony algorithm and the standard intelligent water drop algorithm. The experimental results show that the improved intelligent algorithm proposed in this paper has good convergence and accuracy in the function optimization problem. Secondly, the basic principle of support vector machine (SVM) algorithm is introduced, and the intelligent water drop algorithm is proposed to optimize the parameters of support vector machine (SVM). Then the corresponding performance test is carried out by using the standard test set provided by UCI website, and the experimental results are compared with those of the traditional optimization algorithm. The experimental results show that the improved intelligent water drop algorithm is used to optimize the support vector function to obtain higher regression prediction accuracy. Finally, taking a photovoltaic power station as the research object, the parameter optimization results of genetic algorithm, particle swarm optimization algorithm and intelligent water drop algorithm are compared and analyzed by using the historical data of photovoltaic power station, and the simulation model of photovoltaic MPPT based on IWD-SVM in matlab/simulink environment is given. The results show the feasibility of using intelligent water droplets to optimize SVM model in maximum power tracking of photovoltaic system.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;TM615
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周東寶;陳淵睿;;基于改進(jìn)型變步長(zhǎng)電導(dǎo)增量法的最大功率點(diǎn)跟蹤策略[J];電網(wǎng)技術(shù);2015年06期
2 林虹江;周步祥;冉伊;詹長(zhǎng)杰;楊昶宇;;基于遺傳優(yōu)化BP神經(jīng)網(wǎng)絡(luò)算法的光伏系統(tǒng)最大功率點(diǎn)跟蹤研究[J];電測(cè)與儀表;2015年05期
3 朱正偉;郭楓;孫廣輝;錢(qián)露;;基于RBF-BP神經(jīng)網(wǎng)絡(luò)的光伏MPPT研究[J];計(jì)算機(jī)仿真;2015年02期
4 曹沖;;基于支持向量機(jī)光伏電池最大功率點(diǎn)跟蹤研究[J];廣東電力;2014年12期
5 蔡紀(jì)鶴;孫玉坤;李蓓;徐艷;;基于LS-SVM的光伏最大功率跟蹤控制方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年S1期
6 林亞芹;程軼平;安景;;基于PSO混合核函數(shù)SVM對(duì)光伏最大功率點(diǎn)的預(yù)測(cè)研究[J];電氣自動(dòng)化;2014年05期
7 郭長(zhǎng)亮;張素霜;李銘;杜海超;;光伏電池?cái)?shù)學(xué)模型分析及MPPT控制仿真[J];電源技術(shù);2014年09期
8 陳亞愛(ài);周京華;李津;周玲玲;;梯度式變步長(zhǎng)MPPT算法在光伏系統(tǒng)中的應(yīng)用[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年19期
9 王紅艷;萬(wàn)盟;;基于粒子群算法的MPPT控制策略研究[J];南京工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年02期
10 許強(qiáng)強(qiáng);宋澤琳;王長(zhǎng)愷;;基于DSP的光伏電池最大功率點(diǎn)跟蹤技術(shù)的研究[J];電源技術(shù);2014年03期
相關(guān)博士學(xué)位論文 前1條
1 朱艷偉;光伏發(fā)電系統(tǒng)效率提高理論方法及關(guān)鍵技術(shù)研究[D];華北電力大學(xué);2012年
相關(guān)碩士學(xué)位論文 前7條
1 辛培裕;太陽(yáng)能發(fā)電技術(shù)的綜合評(píng)價(jià)及應(yīng)用前景研究[D];華北電力大學(xué);2015年
2 沈義;我國(guó)太陽(yáng)能的空間分布及地區(qū)開(kāi)發(fā)利用綜合潛力評(píng)價(jià)[D];蘭州大學(xué);2014年
3 李騰飛;復(fù)雜光照條件下光伏發(fā)電系統(tǒng)輸出特性及最大功率點(diǎn)跟蹤研究[D];太原理工大學(xué);2014年
4 姚光輝;光伏并網(wǎng)發(fā)電系統(tǒng)設(shè)計(jì)及MPPT技術(shù)研究[D];浙江大學(xué);2014年
5 張智慧;基于支持向量回歸的光伏發(fā)電MPPT算法研究[D];浙江大學(xué);2013年
6 韓新峰;基于神經(jīng)網(wǎng)絡(luò)與模糊控制的光伏MPPT復(fù)合控制的研究[D];南昌航空大學(xué);2013年
7 郭亮;基于粒子群算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的光伏系統(tǒng)最大功率點(diǎn)跟蹤研究[D];西南交通大學(xué);2011年
,本文編號(hào):2512012
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2512012.html