基于多分類支持向量機的工業(yè)故障分類
[Abstract]:In this paper, the problem of fault classification in complex industrial process is studied. Nowadays, the industrial process has become more large-scale, complex and highly coupled. Any abnormal situation may be spread and magnified, resulting in unnecessary loss of property and casualties throughout the industrial production process. Therefore, the problem of fault classification in complex industrial processes is of great practical significance. So far, data-based fault detection and diagnosis methods have been well developed. For example, some multivariate statistical methods have been proposed, including principal component analysis (Principal Component Analysis,PCA), independent component analysis (Independent Component Analysis,ICA) and support vector machine (Support Vector Machine,SVM). In the classification of high-dimensional data, too many variables will lead to higher computational complexity. And the noise contained in the data will also reduce the accuracy of classification. Therefore, data dimension reduction is very important. At present, there have been many methods of data dimension reduction. For example, the dimensionality reduction methods of principal component analysis, kernel principal component analysis (Kernel Principal Component Analysis,KPCA), independent component analysis and partial least squares (Partial Least Squares,PLS) are used in this paper. In this paper, support vector machine (SVM) and principal component analysis support vector machine (Principal Component Analysis based Support Vector Machine,PCA-SVM) are used for fault classification. Because the dimension reduction of principal component analysis loses the classification accuracy, the kernel principal component analysis support vector machine (Kernel Principal Component Analysis based Support Vector Machine,KPCA-SVM) is used for fault classification to improve the classification accuracy. The kernel function is applied to the dimension reduction process of kernel principal component analysis, and the unknown parameters are introduced, which complicates the calculation process. In order to avoid this problem, independent component analysis support vector machine (Independent component analysis based support vector machine,ICA-SVM) is used for fault classification. It is found that the support vector machine based on principal component analysis and kernel principal component analysis has poor performance in fault classification caused by compound interference. Then, the partial least square support vector machine (Partial Least Squares based support vector machine,PLS-SVM) is used to classify this kind of faults. The traditional partial least square class coding method can not reflect the correlation between categories well, so the category coding method is improved, and the fault classification based on improved partial least square support vector machine method is proposed, and good classification effect is obtained.
【學位授予單位】:渤海大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP18
【相似文獻】
相關(guān)期刊論文 前10條
1 吳娟;范玉妹;王麗;;關(guān)于改進的支持向量機的研究[J];攀枝花學院學報;2006年05期
2 劉碩明;劉佳;楊海濱;;一種新的多類支持向量機算法[J];計算機應用;2008年S2期
3 尹傳環(huán);牟少敏;田盛豐;黃厚寬;;單類支持向量機的研究進展[J];計算機工程與應用;2012年12期
4 王云英;閻滿富;;C-支持向量機及其改進[J];唐山師范學院學報;2012年05期
5 李逢煥;;試述不確定支持向量機應用分析及改進思路[J];中國證券期貨;2012年12期
6 邵惠鶴;支持向量機理論及其應用[J];自動化博覽;2003年S1期
7 曾嶸,蔣新華,劉建成;基于支持向量機的異常值檢測的兩種方法[J];信息技術(shù);2004年05期
8 張凡,賀蘇寧;模糊判決支持向量機在自動語種辨識中的研究[J];計算機工程與應用;2004年21期
9 魏玲,張文修;基于支持向量機集成的分類[J];計算機工程;2004年13期
10 沈翠華,鄧乃揚,肖瑞彥;基于支持向量機的個人信用評估[J];計算機工程與應用;2004年23期
相關(guān)會議論文 前10條
1 余樂安;姚瀟;;基于中心化支持向量機的信用風險評估模型[A];第六屆(2011)中國管理學年會——商務(wù)智能分會場論文集[C];2011年
2 劉希玉;徐志敏;段會川;;基于支持向量機的創(chuàng)新分類器[A];山東省計算機學會2005年信息技術(shù)與信息化研討會論文集(一)[C];2005年
3 史曉濤;劉建麗;駱玉榮;;一種抗噪音的支持向量機學習方法[A];全國第19屆計算機技術(shù)與應用(CACIS)學術(shù)會議論文集(下冊)[C];2008年
4 何琴淑;劉信恩;肖世富;;基于支持向量機的系統(tǒng)辨識方法研究及應用[A];中國力學大會——2013論文摘要集[C];2013年
5 劉駿;;基于支持向量機方法的衢州降雪模型[A];第五屆長三角氣象科技論壇論文集[C];2008年
6 王婷;胡秀珍;;基于組合向量的支持向量機方法預測膜蛋白類型[A];第十一次中國生物物理學術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
7 趙晶;高雋;張旭東;謝昭;;支持向量機綜述[A];全國第十五屆計算機科學與技術(shù)應用學術(shù)會議論文集[C];2003年
8 周星宇;王思元;;智能數(shù)學與支持向量機[A];2005年中國智能自動化會議論文集[C];2005年
9 顏根廷;馬廣富;朱良寬;宋斌;;一種魯棒支持向量機算法[A];2006中國控制與決策學術(shù)年會論文集[C];2006年
10 侯澍e,
本文編號:2507490
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2507490.html