電動(dòng)車(chē)自適應(yīng)巡航控制方法研究
[Abstract]:With the rapid development of global economy and automobile electronic technology, the production and sales of cars have increased sharply, but this has also brought a series of social problems, such as traffic congestion, frequent traffic accidents, serious environmental pollution and a sharp increase in energy consumption. In order to solve the above social problems, electric vehicles and vehicle active safety technology has become the development direction of automobile technology. Adaptive cruise control (Adaptive Cruise Control,ACC), as a safety auxiliary driving technology, is an important part of vehicle active safety technology, and has become a hot research topic at home and abroad. However, the research on adaptive cruise system is mostly focused on fuel vehicles, but the research on electric vehicles is less. Because the research method of adaptive cruise system also changes with the change of vehicle power system, the research of adaptive cruise system based on electric vehicle has great practical significance and value in this paper. In this paper, the control algorithm of adaptive cruise system of electric vehicle is studied by using the strategy of dividing working conditions and layering. The control system is divided into decision layer and execution layer: according to the driving environment of ACC vehicle, the decision layer is divided into three modes: tracking control, speed control and uniform speed control, and the driving controller and braking controller are designed respectively to realize the tracking control of the expected acceleration of the output of the decision layer. Firstly, the control object model in decision layer tracking control mode is established in this paper. The tracking control mode mainly realizes the tracking of the actual workshop distance between the ACC vehicle and the target vehicle to the expected safety workshop distance. Firstly, the planning strategy of the expected safety distance between the two vehicles is selected to complete the planning of the safety workshop distance between the ACC vehicle and the target vehicle. When the vehicle enters the bend, the radial relative motion state information obtained by the radar needs to be transformed into the longitudinal relative motion information of the two vehicles, and then the longitudinal control of the ACC vehicle is carried out. Finally, considering only the longitudinal control of ACC system, combining the longitudinal kinematic characteristics between ACC vehicle and target vehicle and the planned expected safety workshop distance, the LPV model of two-car workshop distance error is established. Secondly, the decision layer control strategy of ACC system is designed, which includes the control mode of ACC vehicle under different working conditions and the switching strategy of controller under each control mode, so as to realize the smooth switching of the controller. In the tracking control mode, the parameters of the established workshop distance error LPV model can be measured and bounded, so H? The distance controller is designed by the control algorithm. Aiming at the speed control mode, the speed cruise controller is designed by using PID control algorithm to track the speed set by the driver. Finally, the driving controller and braking controller of the executive layer are established to track the expected acceleration of the output of the decision layer. Because the electric vehicle can realize the accurate control of the wheel torque, the driving and braking process of the vehicle can be controlled by the wheel torque. When establishing the longitudinal drive dynamics model and braking dynamics model of ACC vehicle, the influence of vehicle slip rate and front and rear axle load transfer is taken into account. Because of the strong nonlinear of the model, the sliding mode control algorithm can be used to design the drive controller and braking controller. Under the conditions of deceleration of the target vehicle, deceleration and acceleration of the target vehicle, brake of the target vehicle and insertion of the adjacent lane vehicle, the ACC system composed of the controller of the decision layer and the executive layer is simulated and verified by using the high precision simulation software veDYNA. The simulation results show that the designed ACC algorithm has good control effect and strong robustness.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U469.72;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王玨;;汽車(chē)主動(dòng)安全技術(shù)及其發(fā)展方向[J];時(shí)代汽車(chē);2017年06期
2 高振海;嚴(yán)偉;李紅建;王大志;王林;;汽車(chē)自適應(yīng)巡航線性參變間距控制算法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2016年04期
3 閆丹彤;何智成;陳東;譚純;;電動(dòng)汽車(chē)自適應(yīng)巡航控制系統(tǒng)建模與仿真[J];計(jì)算機(jī)仿真;2016年01期
4 王楠;劉衛(wèi)國(guó);張君媛;童寶鋒;;汽車(chē)ACC系統(tǒng)縱向控制六模式切換策略仿真研究[J];交通信息與安全;2014年04期
5 王明昊;劉剛;楊述華;;高超聲速飛行器的多胞LPV系統(tǒng)控制器設(shè)計(jì)[J];空間控制技術(shù)與應(yīng)用;2013年01期
6 裴曉飛;劉昭度;馬國(guó)成;齊志權(quán);;汽車(chē)自適應(yīng)巡航系統(tǒng)的多模式切換控制[J];機(jī)械工程學(xué)報(bào);2012年10期
7 裴曉飛;劉昭度;馬國(guó)成;李徑亮;;一種汽車(chē)巡航控制的分層控制算法[J];北京理工大學(xué)學(xué)報(bào);2012年05期
8 裴曉飛;劉昭度;馬國(guó)成;葉陽(yáng);;汽車(chē)主動(dòng)避撞系統(tǒng)的安全距離模型和目標(biāo)檢測(cè)算法[J];汽車(chē)安全與節(jié)能學(xué)報(bào);2012年01期
9 任殿波;張策;張繼業(yè);;考慮前后信息的車(chē)輛跟隨自適應(yīng)控制[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2011年06期
10 張德兆;王建強(qiáng);劉佳熙;李克強(qiáng);連小珉;;加速度連續(xù)型自適應(yīng)巡航控制模式切換策略[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年08期
相關(guān)博士學(xué)位論文 前4條
1 嚴(yán)偉;仿駕駛員速度跟隨行為的自適應(yīng)巡航控制算法研究[D];吉林大學(xué);2016年
2 張德兆;基于彎道行駛的車(chē)輛自適應(yīng)巡航控制[D];清華大學(xué);2011年
3 張磊;基于駕駛員特性自學(xué)習(xí)方法的車(chē)輛縱向駕駛輔助系統(tǒng)[D];清華大學(xué);2009年
4 賓洋;車(chē)輛走停巡航系統(tǒng)的非線性控制研究[D];清華大學(xué);2006年
相關(guān)碩士學(xué)位論文 前9條
1 成旺龍;輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車(chē)自適應(yīng)巡航控制算法的研究[D];吉林大學(xué);2016年
2 張茜;智能車(chē)輛的軌跡跟蹤控制方法研究[D];哈爾濱工業(yè)大學(xué);2015年
3 楊斌;汽車(chē)發(fā)動(dòng)機(jī)電子節(jié)氣門(mén)滑?刂蒲芯縖D];重慶郵電大學(xué);2015年
4 李肖含;汽車(chē)自適應(yīng)巡航控制系統(tǒng)模糊控制策略研究[D];北京理工大學(xué);2015年
5 張振軍;純電動(dòng)汽車(chē)自適應(yīng)巡航控制系統(tǒng)控制策略研究[D];吉林大學(xué);2013年
6 尤洋;汽車(chē)自適應(yīng)巡航系統(tǒng)自調(diào)整因子模糊控制器的優(yōu)化設(shè)計(jì)[D];吉林大學(xué);2012年
7 龔李龍;車(chē)輛自適應(yīng)巡航控制系統(tǒng)的算法研究[D];浙江大學(xué);2012年
8 甘志梅;基于激光雷達(dá)的Stop & Go巡航控制技術(shù)研究[D];上海交通大學(xué);2009年
9 盧燕;城市工況汽車(chē)走—停巡航算法的研究[D];吉林大學(xué);2007年
,本文編號(hào):2506280
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2506280.html