六自由度工業(yè)機器人運動學參數(shù)辨識方法研究
[Abstract]:With the wide application of industrial robots, as one of the performance indicators of industrial robots, the end position accuracy has gradually attracted people's attention. Due to the influence of various error factors, there are always some errors between the actual position and the theoretical position of the industrial robot, which seriously affects the application and popularization of the industrial robot in the case of high precision requirements. At present, calibration technology is the main method to improve the terminal position accuracy of industrial robots. In this paper, focusing on the calibration method and error compensation of six-degree-of-freedom industrial robot, taking a certain type of industrial robot as the object, the following work is carried out: aiming at the calibration problem of industrial robot, combined with the structural characteristics of industrial robot body, the kinematic model is established by DH (Denavit-Hartenberg) method, and the relationship between end position and DH parameters is derived. The kinematic model is verified by simulation and experiment. The conversion relationship between DH parameter error and end position error is derived, and the kinematic error model of industrial robot is further obtained. The linear correlation of kinematic parameters of industrial robot is analyzed, and the linear correlation parameters and their influence on the identification results of kinematic parameters are obtained. According to the kinematic model and error model, the least square method is proposed to solve the kinematic parameters of six-degree-of-freedom industrial robot. In order to simplify the steps of kinematic parameter identification, a genetic Tabu search algorithm is proposed in this paper, which does not need to analyze and transform the error model, but regards the parameter error solution as an optimization problem. The optimal value search is carried out by using the combination of genetic algorithm and Tabu search algorithm, and finally the optimal fitness function value is obtained. Based on the GUI interface between Robotics and MATLAB, the parameter identification software is compiled. The kinematic parameters of industrial robot are simulated and identified by using the least square method and genetic Tabu search algorithm, and the minimum amount of data required by the parameter identification algorithm is determined. The simulation results show that the absolute position accuracy of the end is improved obviously after parameter identification and compensation. After the parameter identification based on the least square method, the maximum direction error at the end of the robot decreases from 3mm to 0.005mm. After parameter identification based on genetic Tabu search algorithm, the maximum direction error at the end is reduced to 0.008mm. The joint arm coordinate measuring machine is used as the measuring tool to carry on the related experimental research. Firstly, the spatial position coordinates of the industrial robot end in the measuring machine coordinate system are measured, and then the spatial position coordinates are transformed into the industrial robot coordinate system by using the algorithm, and the kinematic parameters are identified by using the above two identification methods respectively. In general, the absolute position accuracy of the end of the robot is usually within 5mm. After identification, the maximum direction error decreases from 15mm to 0.7mm and 1.4mm, which can meet the requirements of the robot in general. Finally, the two groups of experimental results are compared and analyzed. The parameter identification effect based on least square method is better, but the identification step of parameter identification algorithm based on genetic Tabu search algorithm is simple, the efficiency is higher, and the algorithm can focus on the optimization of the algorithm.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP242.2
【參考文獻】
相關(guān)期刊論文 前10條
1 熊杰;楊東升;王允森;;遺傳禁忌搜索算法在工業(yè)機器人結(jié)構(gòu)參數(shù)辨識上的應用[J];組合機床與自動化加工技術(shù);2015年12期
2 齊飛;平雪良;劉潔;蔣毅;;工業(yè)機器人參數(shù)辨識及誤差補償方法研究[J];機械傳動;2015年09期
3 白云飛;叢明;楊小磊;劉冬;;基于6參數(shù)模型的6R串聯(lián)機器人運動學參數(shù)辨識[J];機器人;2015年04期
4 李睿;曲興華;;工業(yè)機器人運動學參數(shù)標定誤差不確定度研究[J];儀器儀表學報;2014年10期
5 王曉強;王帥軍;劉建亭;;基于MATLAB的IRB2400工業(yè)機器人運動學分析[J];機床與液壓;2014年03期
6 蔡錦達;張劍皓;秦緒祥;;六軸工業(yè)機器人的參數(shù)辨識方法[J];控制工程;2013年05期
7 譚民;王碩;;機器人技術(shù)研究進展[J];自動化學報;2013年07期
8 王智興;樊文欣;張保成;史源源;;基于Matlab的工業(yè)機器人運動學分析與仿真[J];機電工程;2012年01期
9 張博;魏振忠;張廣軍;;機器人坐標系與激光跟蹤儀坐標系的快速轉(zhuǎn)換方法[J];儀器儀表學報;2010年09期
10 王文;林鏗;高貫斌;陳子辰;;關(guān)節(jié)臂式坐標測量機角度傳感器偏心參數(shù)辨識[J];光學精密工程;2010年01期
相關(guān)博士學位論文 前3條
1 張曉平;六自由度關(guān)節(jié)型機器人參數(shù)標定方法與實驗研究[D];華中科技大學;2013年
2 高貫斌;關(guān)節(jié)臂式坐標測量機自標定方法與誤差補償研究[D];浙江大學;2010年
3 張永貴;噴漆機器人若干關(guān)鍵技術(shù)研究[D];西安理工大學;2008年
相關(guān)碩士學位論文 前10條
1 張虎;面向標定的工業(yè)機器人建模及參數(shù)辨識方法研究[D];哈爾濱工業(yè)大學;2015年
2 熊杰;六關(guān)節(jié)機器人誤差補償技術(shù)研究與實現(xiàn)[D];中國科學院研究生院(沈陽計算技術(shù)研究所);2015年
3 時定兵;基于點約束的機器人運動學參數(shù)標定技術(shù)研究[D];南京理工大學;2014年
4 張越;機器人運動學參數(shù)辨識及冗余參數(shù)研究[D];哈爾濱工業(yè)大學;2013年
5 侯士杰;工業(yè)機器人結(jié)構(gòu)參數(shù)辨識與位姿誤差補償研究[D];南京航空航天大學;2012年
6 龔星如;六自由度工業(yè)機器人運動學標定的研究[D];南京航空航天大學;2012年
7 夏天;工業(yè)機器人運動學標定及誤差分析研究[D];上海交通大學;2009年
8 劉建華;六自由度串聯(lián)機器人運動仿真研究[D];燕山大學;2008年
9 南小海;6R型工業(yè)機器人標定算法與實驗研究[D];華中科技大學;2008年
10 王斌;關(guān)節(jié)臂式三坐標測量系統(tǒng)數(shù)學模型及標定技術(shù)的研究[D];天津大學;2007年
,本文編號:2499668
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2499668.html