MEMS諧振式壓力傳感器諧振器設(shè)計(jì)與分析
[Abstract]:Resonant pressure sensor is a typical MEMS device which makes use of the change of structure frequency under the action of external pressure to realize pressure measurement. This kind of sensor usually makes pressure film and indirect sensitive element resonance beam to feel external pressure, and realizes the secondary sensitive mode. It can output frequency signal directly, and its transmission and measurement can be directly applied to digital technology. It has a broad application prospect. In this paper, the principle of electrostatic drive / capacitance detection is adopted in the resonator. When the voltage U is applied to the package layer, the capacitance between the package layer and the resonance beam is produced, and then the electrostatic force acting on the resonance beam is generated. In the design process of resonator, the ideal capacitance formula is generally adopted, and the influence of edge effect is ignored, which makes the design results error with the practical application. In this paper, not only the influence of edge effect on the capacitance of resonator is considered, but also the influence of edge effect on the deformation, critical voltage and electrostatic stiffness of resonant beam in electromechanical coupling is also considered. At the same time, the resonator is modeled, and the effects of system parameters, voltage and edge effect on the frequency and sensitivity of the system are analyzed. The specific contents are as follows: (1) the existing theoretical formula of capacitance edge effect is analyzed. Considering the influence of length and thickness on the edge effect, the formula with small error is selected. At the same time, the capacitance formula between the plates whose packaging layer is much larger than that of the resonant beam is deduced. The calculation error of the model is large by using the existing plate capacitance formula, but the error of the capacitance calculation formula derived in this paper is small. At the same time, the influence of the size of the packaging layer on the capacitance is simulated and analyzed. When the size of the packaging layer is much larger than the size of the resonant beam, in a certain range, The size change of the package layer basically does not change the capacitance value. (2) when the electrostatic force acts on the resonant beam, the resonant beam will deform, and when the electrostatic force is greater than the recovery force of the resonant beam, the resonant beam will be adsorbed to the package layer; The warping deformation and critical voltage of resonant beam are solved by numerical and finite element analysis. When there is electrostatic force in the resonant beam, the electrostatic stiffness will be introduced. when the voltage is small, the influence of the deformation of the resonant beam will be ignored, and the electrostatic stiffness of the resonant beam will be solved. At the same time, the influence of edge effect on the deformation, critical voltage and electrostatic stiffness of resonant beam is considered. (3) the free vibration model of resonant beam is established, and the vibration mode and frequency of resonant beam and the equivalent mass of resonant beam are solved. When the electrostatic stiffness is introduced into the resonant beam, the equivalent stiffness of the resonant beam is softened and the resonant frequency is relatively reduced. by solving the ratio of electrostatic stiffness and mechanical stiffness, the resonant frequency under electromechanical coupling is further solved. The influence of voltage and edge effect on resonance frequency is analyzed. The resonator model is established, and the effects of system parameters such as resonance beam, pressure film, anchor point, voltage and edge effect on resonance frequency and sensitivity are analyzed.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 迎九;;尤政院士談中國制造與傳感器/MEMS的發(fā)展前景[J];電子產(chǎn)品世界;2017年01期
2 肖應(yīng)超;;MEMS傳感器發(fā)展現(xiàn)狀與應(yīng)用[J];中國高新技術(shù)企業(yè);2016年35期
3 焦文龍;苑偉政;;微諧振式壓力傳感器的系統(tǒng)級(jí)建模與仿真[J];機(jī)械與電子;2016年06期
4 苑偉政;任森;鄧進(jìn)軍;喬大勇;;硅微機(jī)械諧振壓力傳感器技術(shù)發(fā)展[J];機(jī)械工程學(xué)報(bào);2013年20期
5 萬步勇;張小松;馮慶;;非平行板電容器電容的邊緣效應(yīng)研究[J];大學(xué)物理;2012年07期
6 馬志波;姜澄宇;任森;苑偉政;;基于SOI的硅微諧振式壓力傳感器芯片制作[J];傳感技術(shù)學(xué)報(bào);2012年02期
7 李玉欣;陳德勇;王軍波;焦海龍;羅振宇;;基于自停止腐蝕技術(shù)的H型諧振式微機(jī)械壓力傳感器[J];光學(xué)精密工程;2011年12期
8 孫杰;;MEMS技術(shù)的發(fā)展及其在航天領(lǐng)域的應(yīng)用研究[J];航天標(biāo)準(zhǔn)化;2010年03期
9 陳文峰;胡先權(quán);;虛位移法求解電磁場(chǎng)力[J];重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
10 郭冰;王沖;;壓力傳感器的現(xiàn)狀與發(fā)展[J];中國儀器儀表;2009年05期
相關(guān)博士學(xué)位論文 前3條
1 周吳;微加速度計(jì)的機(jī)電耦合特性及關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2010年
2 王洪喜;微結(jié)構(gòu)的靜電驅(qū)動(dòng)特性研究[D];西安電子科技大學(xué);2006年
3 陳德勇;微機(jī)械諧振梁壓力傳感器研究[D];中國科學(xué)院研究生院(電子學(xué)研究所);2002年
相關(guān)碩士學(xué)位論文 前7條
1 藍(lán)洪芳;基于電容邊緣效應(yīng)的叉指式微加速度計(jì)性能分析[D];電子科技大學(xué);2016年
2 王智沖;微梁式諧振壓力傳感器多場(chǎng)耦合動(dòng)力學(xué)特性研究[D];燕山大學(xué);2015年
3 李森林;多晶硅電阻電熱激勵(lì)/壓阻檢測(cè)微諧振式加速度計(jì)研究[D];中國計(jì)量學(xué)院;2014年
4 常文娟;諧振式壓力傳感器振動(dòng)特性分析[D];燕山大學(xué);2012年
5 劉靜;基于IPMC的諧振力傳感器的研究與開發(fā)[D];東北大學(xué);2011年
6 何江波;支撐梁有誤差的力平衡式微加速度計(jì)性能研究[D];西南交通大學(xué);2011年
7 卜丹;基于MEMS的硅梁諧振式氣體傳感器研制[D];黑龍江大學(xué);2006年
,本文編號(hào):2480506
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2480506.html