基于自適應(yīng)圖的半監(jiān)督流形正則化分類學(xué)習(xí)框架研究
[Abstract]:Semi-supervised classification learning is an important research field in machine learning. At present, a large number of semi-supervised classification learning algorithms have been proposed one after another. But in real-life learning tasks, it is difficult for researchers to decide which method to choose. As far as we know, there is no relevant theoretical or empirical guidance. In addition, manifold regularization (Manifold regularization,MR) provides a powerful learning framework for semi-supervised classification learning, but there are two problems existing in traditional manifold regularization methods: 1) Manifold regularization methods usually construct manifold structure graphs in advance; And in the process of learning fixed. The construction of Manifold structure graph and the process of classification learning are independent of each other, and the graph is not necessarily beneficial to the subsequent classification. 2) there are some adjustable parameters in the process of graph construction. However, there is still a lack of effective solutions to parameter selection in semi-supervised learning, which brings some obstacles to the construction of manifolds. Therefore, the content of this paper mainly includes the following two parts: firstly, in order to give empirical guidance on the selection of semi-supervised classification methods, the typical semi-supervised classification methods are compared. Because the existing semi-supervised classification methods can be divided according to the data distribution hypothesis, this paper studies and compares the transduction support vector machine (Transductive Support Vector Machine,TSVM) based on the clustering hypothesis based on the least squares (Least Squares,LS) method. The regularized least square classification (Laplacian Regularized Least Squares Classification,LapRLSC (LLS) method based on manifold hypothesis and the classification performance of the two hypothetical SemiBoost and implicitly constrained least squares (Implicitly Constrained Semi-supervised Least Squares,ICLS without any assumptions are used. The following conclusions are obtained: 1) when the data distribution is known, the better classification performance can be guaranteed by using the corresponding data distribution hypothesis; 2) TSVM can achieve high classification accuracy when there is no prior knowledge of data distribution and the number of samples is limited. 3) when it is difficult to obtain sample category markers and emphasize classification security, ICLS, should be selected and LapRLSC is also one of the better options. Secondly, a semi-supervised manifolds regularization classification learning framework based on adaptive graph (AGMR), for short) is proposed to construct and classify graphs at the same time. In this framework, the process of graph construction and classification learning is unified with each other, thus promoting each other. At the same time, the parameters of Manifold structure graph are adjusted with the learning process and do not need to be given in advance. For graph weight constraints, entropy constraint AGMR (AGMR_entropy) and sparse constraint AGMR (AGMR_sparse) methods are developed by using entropy constraint and sparse constraint, respectively. The experimental results show that the new method can effectively improve the learning performance of the traditional manifold regularization framework.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP181
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林克明;薛永生;文娟;;一種基于信息論的歸納分類學(xué)習(xí)算法[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
2 王莉莉;張少白;;一種基于聲音分類學(xué)習(xí)的神經(jīng)模型研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2011年12期
3 潘巍;馬培軍;蘇小紅;;大間隔分類學(xué)習(xí)研究現(xiàn)狀[J];智能計(jì)算機(jī)與應(yīng)用;2013年06期
4 丁衛(wèi)平;王建東;管致錦;施Oz;;基于動態(tài)交叉協(xié)同的屬性量子進(jìn)化約簡與分類學(xué)習(xí)級聯(lián)算法[J];模式識別與人工智能;2011年06期
5 倪艾玲;柯棟梁;;基于預(yù)算約束下的分類學(xué)習(xí)[J];安徽工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年02期
6 崔玉文,馮曉寧;基于案例的學(xué)習(xí)方法的研究及其應(yīng)用[J];齊齊哈爾大學(xué)學(xué)報(bào);2002年03期
7 劉麗珍,宋瀚濤,陸玉昌;基于Naive Bayes的CLIF_NB文本分類學(xué)習(xí)方法[J];小型微型計(jì)算機(jī)系統(tǒng);2005年09期
8 王文劍;梁志;郭虎升;;基于數(shù)據(jù)關(guān)系的SVM多分類學(xué)習(xí)算法[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
9 劉柏嵩;賀賽龍;;一種基于Web的分類體系學(xué)習(xí)算法[J];寧波大學(xué)學(xué)報(bào)(理工版);2008年01期
10 顧鑫;王士同;;大樣本多源域與小目標(biāo)域的跨領(lǐng)域快速分類學(xué)習(xí)[J];計(jì)算機(jī)研究與發(fā)展;2014年03期
相關(guān)會議論文 前1條
1 楊波;秦鋒;程澤凱;;一種新的分類學(xué)習(xí)系統(tǒng)評估度量[A];2005年“數(shù)字安徽”博士科技論壇論文集[C];2005年
相關(guān)重要報(bào)紙文章 前2條
1 記者 崔維利 袁松年;四平“分類學(xué)習(xí)法”實(shí)現(xiàn)全覆蓋[N];吉林日報(bào);2013年
2 毛勁 張玲;“分類學(xué)習(xí)+重點(diǎn)練兵”讓隊(duì)伍更專業(yè)[N];檢察日報(bào);2010年
相關(guān)博士學(xué)位論文 前1條
1 王春陽;基于信息熵的自訓(xùn)練半監(jiān)督高光譜遙感影像分類研究[D];河南理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 孟巖;基于自適應(yīng)圖的半監(jiān)督流形正則化分類學(xué)習(xí)框架研究[D];南京郵電大學(xué);2017年
2 張帆;基于加權(quán)的多流形排序的圖像檢索研究[D];東北師范大學(xué);2017年
3 朱華;具有平行平均曲率向量的緊致偽臍子流形[D];西南大學(xué);2017年
4 歐慧;基于流形距離和蜂群的聚類算法研究[D];長沙理工大學(xué);2016年
5 田君杰;基于流形的GNSS欺騙干擾識別[D];杭州電子科技大學(xué);2017年
6 王守成;流形改正算法在非保守和耗散限制性三體問題中的應(yīng)用[D];南昌大學(xué);2017年
7 葛亞波;分類學(xué)習(xí)中分散效應(yīng)及其認(rèn)知機(jī)制的研究[D];浙江師范大學(xué);2016年
8 張迪;基于跨領(lǐng)域分類學(xué)習(xí)的產(chǎn)品評論情感分析[D];上海交通大學(xué);2010年
9 奚臣;半監(jiān)督分類方法研究[D];江南大學(xué);2017年
10 陳瑤;2維流形STL曲面網(wǎng)格的重建算法研究[D];湘潭大學(xué);2017年
,本文編號:2475602
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2475602.html