Spark下的并行多標(biāo)簽最近鄰算法
[Abstract]:With the arrival of big data era, large-scale multi-label data mining methods have received extensive attention. Multi-label nearest neighbor algorithm (MLKNN) is a simple, efficient and widely used multi-label classification method, and its classification accuracy is higher than other common multi-label learning methods in many applications. However, with the increasing scale of data to be processed, the traditional serial ML-KNN algorithm has been difficult to meet the time and storage space constraints in big data's application. Combined with the parallel mechanism of Spark and the characteristics of iterative computation based on memory, a ML-KNN algorithm SML-KNN. based on Spark parallel framework is proposed. The K nearest neighbors of each partition are found in the Map phase, and then the final K nearest neighbors are determined according to the nearest neighbor sets of each partition in the Reduce phase. Finally, the label sets of the nearest neighbors are aggregated in parallel. The target label set of samples to be predicted is outputted by maximizing the posterior probability criterion. The experimental results in serial and parallel environments show that the performance of SML-KNN is approximately linear with computing resources on the premise of ensuring the accuracy of classification, which improves the processing ability of ML-KNN algorithm to large-scale multi-label data.
【作者單位】: 重慶郵電大學(xué)計算智能重慶市重點實驗室;
【基金】:重慶市基礎(chǔ)與前沿研究計劃項目(csts2014jcyjA40001,cstc2014jcyjA40022) 重慶市教委科學(xué)技術(shù)研究項目(自然科學(xué)類)(KJ1400436)
【分類號】:TP181
【相似文獻】
相關(guān)期刊論文 前10條
1 宋杰;;蛋白質(zhì)亞細胞定位預(yù)測的最近鄰算法[J];計算機應(yīng)用研究;2007年11期
2 張瑞民;郭海剛;李培巒;;基于核的k最近鄰算法[J];華北水利水電學(xué)院學(xué)報;2007年06期
3 潘世瑞;張陽;李雪;王勇;;針對不確定正例和未標(biāo)記學(xué)習(xí)的最近鄰算法(英文)[J];計算機科學(xué)與探索;2010年09期
4 李強;蔣靜坪;;量子K最近鄰算法[J];系統(tǒng)工程與電子技術(shù);2008年05期
5 宋杰;;蛋白質(zhì)相互作用預(yù)測的核最近鄰算法[J];計算機應(yīng)用研究;2009年11期
6 周武;趙春霞;張浩峰;;動態(tài)聯(lián)合最近鄰算法[J];電子學(xué)報;2010年02期
7 于學(xué)斗;;基于核的K-最近鄰算法的主動式防御研究[J];計算機安全;2009年07期
8 楊夢雄;楊貫中;;基于K-最近鄰算法的話務(wù)智能預(yù)測技術(shù)[J];科學(xué)技術(shù)與工程;2007年21期
9 陳凱;王立松;;一種新的加權(quán)最近鄰算法的降水預(yù)報試驗[J];計算機仿真;2014年06期
10 謝金晶;張藝瀕;;基于改進的K-最近鄰算法的病毒檢測方法[J];現(xiàn)代電子技術(shù);2007年03期
相關(guān)會議論文 前2條
1 潘世瑞;張陽;李雪;王勇;;針對不確定正例和未標(biāo)記學(xué)習(xí)的最近鄰算法(英文)[A];NDBC2010第27屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集A輯二[C];2010年
2 周曉丹;馮少榮;薛永生;;一種基于改進最近鄰算法的缺失數(shù)據(jù)處理[A];第二十四屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2007年
相關(guān)碩士學(xué)位論文 前1條
1 陳煜;基于多維度量的出租車推薦系統(tǒng)的研究與實現(xiàn)[D];大連理工大學(xué);2015年
,本文編號:2470875
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2470875.html