天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

電活性石墨烯凝膠材料的構(gòu)筑及傳感性能研究

發(fā)布時間:2019-04-26 09:02
【摘要】:石墨烯具備優(yōu)異的電學、光學、物理化學等特性,然而,由于層間作用力的影響,導致現(xiàn)有的石墨烯材料比表面積小、導電性低,固有優(yōu)越性質(zhì)未能充分體現(xiàn)。凝膠化方法是破解上述問題的有效策略,近年,石墨烯凝膠在傳感、催化和能源等領(lǐng)域得到廣泛應(yīng)用,但目前構(gòu)筑的石墨烯凝膠往往大而空,性能并不理想,進一步提高其電子傳導性是亟待解決的問題。此外,石墨烯凝膠不具備特殊的催化活性以及功能性,因此,對其進行功能化具有重要意義。于此,我們通過構(gòu)筑氮硫共摻雜多重石墨烯氣凝膠,并復(fù)合硫化鎳鈷、核殼型鈀金納米粒子,實現(xiàn)了石墨烯凝膠材料在電子傳導性、電解質(zhì)傳輸速率和催化活性等方面的顯著提升和功能化,拓展其在傳感領(lǐng)域中的應(yīng)用。構(gòu)筑氮硫共摻雜多重石墨烯凝膠以提高材料電子傳導率和電解質(zhì)親和力。以氧化石墨為原料,硫脲、對苯二胺為氮源和硫源,水熱還原制備單重石墨烯氣凝膠;而后置于與之大小相契合的容器中,在凝膠上方刺孔以打通內(nèi)部封閉孔,并從孔道中引入氧化石墨烯的混合分散液,繼續(xù)凝膠化反應(yīng)獲得二重氣凝膠;重復(fù)上述過程,構(gòu)筑多重石墨烯氣凝膠;以磷酸進行活化,最后在Ar/H_2氛圍中熱處理得到氮硫共摻雜多重石墨烯凝膠(N,S-MGA-n)。該凝膠呈現(xiàn)獨特三維網(wǎng)絡(luò)多孔結(jié)構(gòu),比表面積高達1106.8 m~2/g,展示出比普通石墨烯凝膠更高密度、導電性和電化學活性,且電化學特性能通過改變凝膠化次數(shù)進行調(diào)控。制備Ni Co_2S_4/N,S-MGA復(fù)合材料并采用電容為模型研究材料電化學性能。以叔丁醇為“軟模板”,在N,S-MGA內(nèi)部原位生長Ni Co LDH,經(jīng)硫化鈉硫化后得Ni Co_2S_4/N,S-MGA-5復(fù)合材料;其比表面積為76.3 m~2g~(-1),比電容達822.5 F/g(1A/g下),電流密度增至60 A/g后,電容仍達244.4 F/g;兩電極體系中能量密度達122 Wh/kg(P為800 W/kg),在連續(xù)循環(huán)充放電3000次后,比電容量衰減不到0.62%。數(shù)據(jù)結(jié)果表明Ni Co_2S_4/N,S-MGA具備極高電活性、電子傳導性和優(yōu)異的電化學穩(wěn)定性。研究Ni Co_2S_4/N,S-MGA復(fù)合材料對葡萄糖的催化作用并構(gòu)建生物傳感器。以Ni Co_2S_4/N,S-MGA為傳感材料、葡萄糖氧化酶充當識別因子,構(gòu)建葡萄糖生物傳感器;該傳感器對葡萄糖展示出良好的電化學響應(yīng),濃度線性范圍為1.0×10~(-5)~1.5×10~(-3 )M,檢測限為3.0×10~(-6 )M,這得益于復(fù)合材料良好的電解質(zhì)親和力、電子傳導性和電催化活性。方法重現(xiàn)性和穩(wěn)定性好,成功應(yīng)用于實際樣品中葡萄糖的測定。合成Pd@Au/N,S-MGA復(fù)合材料并應(yīng)用于多巴胺的檢測。制備規(guī)整的Pd納米立方體,以之為“核”合成Pd@Au納米多面體,再與N,S-MGA-5復(fù)合并構(gòu)建多巴胺傳感器。其線性響應(yīng)范圍為1.0×10~(-9)~4.0×10~(-5) M,檢測限為3.6×10~(-10) M(S/N=3),超靈敏的電化學響應(yīng)歸功于Pd@Au優(yōu)異電催化活性和復(fù)合材料間的電化學協(xié)同效應(yīng)。方法重現(xiàn)性、穩(wěn)定性好,抗干擾性強,成功用于實際樣品中多巴胺的測定,回收率為96.0%~100.9%。
[Abstract]:Graphene has excellent electrical, optical, physical and chemical properties. However, due to the influence of interlayer forces, the existing graphene materials have small specific surface area and low conductivity, and their inherent superior properties have not been fully reflected. Gelation is an effective strategy to solve these problems. In recent years, graphene gels have been widely used in the fields of sensing, catalysis and energy, but the graphene gels constructed at present are often large and empty, and their properties are not ideal. The further improvement of its electronic conductivity is an urgent problem to be solved. In addition, graphene gel has no special catalytic activity and function, so it is of great significance to functionalize it. By constructing N-S co-doped multiple graphene aerogels and Ni-Co sulphide and core-shell palladium-gold nanoparticles, we have realized the electronic conductivity of graphene gel materials. The electrolyte transport rate and catalytic activity have been greatly improved and functionalized, and their applications in sensing field have been expanded. Nitrogen-sulfur co-doped graphene gels were constructed to improve the electronic conductivity and electrolyte affinity of the materials. Using graphite oxide as raw material, thiourea and p-phenylenediamine as nitrogen and sulfur sources, single graphene aerogel was prepared by hydrothermal reduction. Then it is placed in a container which fits the size of the gel, piercing the hole above the gel to open the internal sealing hole, and introducing the mixed dispersion solution of graphene oxide from the pore channel to continue the gelation reaction to obtain the double aerogel. The polygraphene aerogel was prepared by repeating the above process, activated by phosphoric acid, and heat treated in Ar/H_2 atmosphere to obtain N, S co-doped poly-graphene gel (N, S _ (x) MGA _ (a) 路n ~ (- 1). The gel exhibits a unique three-dimensional network porous structure with a specific surface area of 1106.8 mg / 2 g, showing higher density, conductivity and electrochemical activity than the normal graphene gel. The electrochemical properties of the gel are regulated by changing the gelation times. The electrochemical properties of Ni Co_2S_4/N,S-MGA composites were studied by capacitance model. Using tert-butanol as "soft template", Ni Co_2S_4/N,S-MGA-5 composites were prepared by in-situ growth of Ni Co LDH, in-situ in the presence of sodium sulfide. The specific surface area is 76.3m 路2g ~ (- 1), the specific capacitance is 822.5 F 路g ~ (- 1), the current density is 60 A 路g ~ (- 1), the capacitance is 244.4 F 路g ~ (- 1), and the specific capacitance is 822.5 F 路g ~ (- 1). The energy density of the two-electrode system is 122 Wh/kg (P = 800 W/kg). After 3000 cycles of charge and discharge, the specific capacitance decreases less than 0.62%. The results show that Ni Co_2S_4/N,S-MGA has very high electrical activity, electronic conductivity and excellent electrochemical stability. The catalytic effect of Ni Co_2S_4/N,S-MGA composite on glucose was studied and the biosensor was constructed. Glucose biosensor was constructed by using Ni Co_2S_4/N,S-MGA as sensing material and glucose oxidase as recognition factor. The sensor showed a good electrochemical response to glucose. The linear range of the sensor was 1.0 脳 10 ~ (- 5) ~ 1.5 脳 10 ~ (- 3) M, and the detection limit was 3.0 脳 10 ~ (- 6) M, which was due to the good electrolyte affinity of the composite, and the linear range was 1.0 脳 10 ~ (- 5) ~ 1.5 脳 10 ~ (- 3) M. Electronic conductivity and electrocatalytic activity. The method has good reproducibility and stability and has been successfully applied to the determination of glucose in practical samples. Pd@Au/N,S-MGA composite was synthesized and applied to the detection of dopamine. The regular Pd nano-cube was prepared and used as "nucleus" to synthesize Pd@Au nano-polyhedron. Then, the Pd@Au nano-polyhedron was combined with N, S-MGA-O-5 and the dopamine sensor was constructed. The linear response range is 1.0 脳 10 ~ (- 9) ~ 4.0 脳 10 ~ (- 5) M, and the detection limit is 3.6 脳 10 ~ (- 10) M (S/N=3. The ultra-sensitive electrochemical response is attributed to the excellent electrocatalytic activity of Pd@Au and the electrochemical synergistic effect between composites. The method has the advantages of good reproducibility, good stability and strong anti-interference. The method has been successfully applied to the determination of dopamine in practical samples with a recovery of 96.0% and 100.9%.
【學位授予單位】:江南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ427.26;TP212

【參考文獻】

相關(guān)期刊論文 前10條

1 趙偉剛;羅路;王洪艷;;高比表面積活性炭吸附儲氫材料的研究進展[J];材料科學與工程學報;2016年05期

2 李廣勇;吳曉涵;何偉娜;方建慧;張學同;;石墨烯氣凝膠的可控組裝[J];物理化學學報;2016年09期

3 張建侃;趙鳳起;徐司雨;汪營磊;;應(yīng)用于固體推進劑的石墨烯及其復(fù)合材料制備技術(shù)研究進展[J];火炸藥學報;2016年03期

4 Sijie Guo;Yanmei Yang;Naiyun Liu;Shi Qiao;Hui Huang;Yang Liu;Zhenhui Kang;;One-step synthesis of cobalt,nitrogen-codoped carbon as nonprecious bifunctional electrocatalyst for oxygen reduction and evolution reactions[J];Science Bulletin;2016年01期

5 陳曉燕;孫怡然;于飛;陳君紅;馬杰;;石墨烯基氣凝膠催化還原特性及其應(yīng)用[J];化學進展;2015年11期

6 李晨;張熊;王凱;張海濤;孫現(xiàn)眾;馬衍偉;;三維石墨烯網(wǎng)絡(luò)在超級電容器中的應(yīng)用(英文)[J];新型炭材料;2015年03期

7 林婷婷;呂秋豐;;氮摻雜石墨烯的制備及應(yīng)用[J];功能材料;2015年05期

8 鄒志宇;戴博雅;劉忠范;;石墨烯的化學氣相沉積生長與過程工程學研究[J];中國科學:化學;2013年01期

9 袁小亞;;石墨烯的制備研究進展[J];無機材料學報;2011年06期

10 徐秀娟;秦金貴;李振;;石墨烯研究進展[J];化學進展;2009年12期

相關(guān)博士學位論文 前3條

1 嚴濤;三維鎳/鈷電極材料的構(gòu)建及超級電容性能研究[D];江南大學;2017年

2 胡涵;石墨烯氣凝膠的控制制備、改性及性能研究[D];大連理工大學;2014年

3 周民;貴金屬納米粒子的可控合成與表征[D];山東大學;2006年

相關(guān)碩士學位論文 前6條

1 貝紅霞;高密度石墨烯電化學傳感材料的制備與應(yīng)用[D];江南大學;2016年

2 張娟娟;3D石墨烯/納米金復(fù)合材料的制備及在電化學傳感器中的應(yīng)用[D];江南大學;2015年

3 嚴琳;3D石墨烯復(fù)合材料構(gòu)建及在傳感器中的應(yīng)用研究[D];江南大學;2014年

4 石秋榮;金鈀納米晶的制備及其電催化性能的研究[D];山東大學;2014年

5 嚴濤;超級電容器用鎳鈷雙金屬氫氧化物多孔復(fù)合材料的制備及性能研究[D];江南大學;2013年

6 張改秀;金鈀合金納米線的制備及對葡萄糖傳感性能的研究[D];湖南大學;2013年

,

本文編號:2465938

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2465938.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9bc97***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com