RNA遺傳算法及在橋式吊車中的應(yīng)用研究
[Abstract]:Genetic algorithm is a kind of intelligent optimization algorithm, which is simple and easy to use, strong robustness, parallel ability and large expansion space. It simulates the natural law of biological evolution, "survival of the fittest," and because genetic algorithms have no continuity or differentiability in their treatment of optimization problems, RNA genetic algorithm (RNA-GA) is a new type of genetic algorithm inspired by RNA molecular operations. The improvement of RNA genetic algorithm and its application in bridge crane are discussed in this paper. The main contents of this paper are as follows: (1) the development and research status of genetic algorithms are summarized briefly. And the research status of modeling and control of bridge crane. (2) A new RNA genetic algorithm (fsRNA-GA), which is inspired by fish herd behavior, is proposed. A neighborhood search operation designed in fsRNA-GA is used to measure the degree of crowding among individuals by defining the crowding factor of fitness function in order to find more potential individuals in local space. In view of the large number of parameters to be optimized, matrix coding is used instead of chain coding in RNA-GA. Experiments on some typical test functions show that the algorithm has good performance for low and high dimensional unconstrained optimization problems. The proposed fsRNA-GA is used to optimize the radial basis function (RBF) neural network basis function center. The neural network is trained by the data collected from the bridge crane experiment platform, and the RBF neural network model of the bridge crane position and swing angle is established. The simulation results show the effectiveness of the proposed neural network model. (3) A high-order codon selection operation RNA genetic algorithm (csRNA-GA) is proposed. This algorithm increases the probability of elite genes entering the next generation in the process of evolution, and enriches the diversity of the population. Through the optimization experiments of some typical test functions, the results show that the proposed algorithm has better global search ability and average convergence accuracy. Aiming at the parameter setting problem of PID controller in bridge crane system, the csRNA-GA algorithm is used to optimize the parameters of double PID controller of bridge crane system. The simulation results show that the optimized parameters of the PID controller can realize the control effect of the two-dimensional bridge crane with fast speed, no overshoot and small swing amplitude.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐傳敬;趙敏;李天明;;一種改進(jìn)遺傳算法的PID參數(shù)整定研究[J];計算機(jī)技術(shù)與發(fā)展;2016年09期
2 張夢杰;徐為民;鄭翔;劉玉強(qiáng);;關(guān)于橋式吊車動態(tài)系統(tǒng)穩(wěn)定性控制研究[J];計算機(jī)仿真;2016年07期
3 孫寧;方勇純;陳鶴;;欠驅(qū)動慣性輪擺系統(tǒng)全局滑?刂芠J];控制理論與應(yīng)用;2016年05期
4 王輝;朱龍彪;朱天成;陳紅艷;邵小江;朱志慧;;基于粒子群遺傳算法的泊車系統(tǒng)路徑規(guī)劃研究[J];工程設(shè)計學(xué)報;2016年02期
5 陳鶴;方勇純;孫寧;錢_g哲;;基于偽譜法的雙擺吊車時間最優(yōu)消擺軌跡規(guī)劃策略[J];自動化學(xué)報;2016年01期
6 周超;;基于ARM的橋式吊車信息融合控制器的設(shè)計[J];自動化與儀器儀表;2015年11期
7 吳勇;王雪;趙煥義;;基于圖染色理論和遺傳蜂群算法的并行測試任務(wù)調(diào)度[J];計算機(jī)應(yīng)用;2015年05期
8 孫寧;方勇純;錢_g哲;;帶有狀態(tài)約束的雙擺效應(yīng)吊車軌跡規(guī)劃[J];控制理論與應(yīng)用;2014年07期
9 杜文正;謝政;童國林;;基于粒子群優(yōu)化算法的橋式起重機(jī)PID控制參數(shù)優(yōu)化[J];計算機(jī)測量與控制;2013年02期
10 孫寧;方勇純;苑英海;張玉東;;一種基于分段能量分析的橋式吊車鎮(zhèn)定控制器設(shè)計方法[J];系統(tǒng)科學(xué)與數(shù)學(xué);2011年06期
相關(guān)博士學(xué)位論文 前3條
1 孫寧;欠驅(qū)動吊車軌跡規(guī)劃與非線性控制策略設(shè)計、分析及應(yīng)用[D];南開大學(xué);2014年
2 陶吉利;基于DNA計算的遺傳算法及應(yīng)用研究[D];浙江大學(xué);2007年
3 李曉磊;一種新型的智能優(yōu)化方法-人工魚群算法[D];浙江大學(xué);2003年
,本文編號:2453275
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2453275.html