基于CUDA的實時目標(biāo)識別系統(tǒng)的設(shè)計與實現(xiàn)
[Abstract]:Robot visual servo is a complex system which can be applied in different fields. Under the background of visual servo, this paper focuses on the fast target recognition based on CUDA. The camera information is collected. Finally, the position deviation of the target is identified and output to the visual servo system for control application. In this paper, we focus on the related problems of target recognition algorithms, including tracking methods, recognition methods and so on. Secondly, the parallel optimization problem is focused on, and the algorithm implementation of the basic modules such as SIFT,CAMSHIFT is optimized according to the CUDA platform. Finally, the feasibility and performance of the method are verified by the robot visual servo system. The research contents of this paper include four parts. The contents of each part are summarized as follows: the first part focuses on the related contents of several basic algorithms involved in the paper, including the explanation, understanding and explanation of some principles. Firstly, the algorithm processing process under the project background is briefly introduced, and the actual input and output are explained. Secondly, the basic knowledge of SIFT is introduced, including the construction of scale space, detection of extreme points, gradient calculation of feature points, computation of feature descriptors, feature matching and so on. Thirdly, the basic knowledge of CAMSHIFT is introduced, including histogram generation, backward probability projection, image moment calculation, histogram intersection and so on. Finally, the related contents of parallel optimization are introduced, including parallel specification, Amdahld theorem and Gustafson theorem. The second part focuses on the design of fast target recognition algorithm. Including the concrete application realization, the concrete coordination way and so on. First, the stable feature matching based on SIFT feature matching is introduced, which is used to provide stable feature reference. Secondly, the fast target ROI acquisition based on CAMSHIFT tracking is introduced. Finally, the evaluation mechanism and identification strategy of the algorithm are introduced. The third part focuses on the practical parallel optimization design of fast target recognition algorithm. From the point of view of parallel optimization, the related principle is applied in detail. First of all, the design and implementation of the actual CUDA framework based on the relevant modules of SIFT. Secondly, the design and implementation of the actual CUDA framework based on the CAMSHIFT related sub-module is carried out. The fourth part: the concrete experiment has been carried out. From the single module recognition effect, the overall recognition effect and so on, the actual effect of this method is shown in detail. The results are simply analyzed and introduced.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭西點;袁浩巍;杜正陽;陳忠;張文強(qiáng);;一種高速視覺實時定位與跟蹤系統(tǒng)的研制[J];上海電氣技術(shù);2015年01期
2 岳田爽;趙懷慈;花海洋;;基于CUDA的光線追蹤優(yōu)化算法研究與實現(xiàn)[J];計算機(jī)應(yīng)用與軟件;2015年01期
3 閆鈞華;杭誼青;許俊峰;儲林臻;;基于CUDA的高分辨率數(shù)字視頻圖像配準(zhǔn)快速實現(xiàn)[J];儀器儀表學(xué)報;2014年02期
4 楊斌;周如江;張明利;薛旦;;基于機(jī)器視覺的智能定位與檢測技術(shù)研究[J];機(jī)械工程師;2013年11期
5 黃海;;淺論CPU現(xiàn)狀及發(fā)展趨勢[J];河南科技;2013年02期
6 汪前進(jìn);高勇;李存華;;基于多核處理器的多任務(wù)并行處理技術(shù)研究[J];計算機(jī)應(yīng)用與軟件;2012年07期
7 肖江;胡柯良;鄧元勇;;基于CUDA的矩陣乘法和FFT性能測試[J];計算機(jī)工程;2009年10期
8 陳國良;苗乾坤;孫廣中;徐云;鄭啟龍;;分層并行計算模型[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2008年07期
9 沈緒榜;;MPP系統(tǒng)芯片體系結(jié)構(gòu)技術(shù)的發(fā)展[J];中國科學(xué)(E輯:信息科學(xué));2008年06期
10 馮煌;;GPU圖像處理的FFT和卷積算法及性能分析[J];計算機(jī)工程與應(yīng)用;2008年02期
相關(guān)會議論文 前1條
1 譚錦輝;顧亞平;張俊;謝兵森;;一種融合CAMShift和SIFT的視頻對象跟蹤算法[A];第九屆全國信息獲取與處理學(xué)術(shù)會議論文集Ⅰ[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 于瀟宇;高速視覺測量系統(tǒng)關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年
2 白洪濤;基于GPU的高性能并行算法研究[D];吉林大學(xué);2010年
相關(guān)碩士學(xué)位論文 前5條
1 陳雪;基于DataMPI的并行矩陣乘法計算模型研究[D];上海大學(xué);2016年
2 陳朝;孔組位置度視覺測量技術(shù)研究[D];吉林大學(xué);2015年
3 袁顯贊;基于機(jī)器視覺的裝配孔組定位技術(shù)研究[D];長春工業(yè)大學(xué);2015年
4 宋金華;六軸工業(yè)機(jī)器人的軌跡規(guī)劃與控制系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2013年
5 張新;并行支持向量機(jī)算法研究[D];山東科技大學(xué);2009年
,本文編號:2451659
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2451659.html