農(nóng)村居民用水行為識別方法研究
[Abstract]:With the development of economy and the improvement of residents' living standard, population growth, environmental pollution and urbanization make the contradiction between supply and demand of water resources more and more prominent, and the problem of water security is becoming more and more prominent. The study of water use behavior of rural residents can improve the awareness of water saving and improve the weak situation of water resources management. The method proposed in this paper can accurately identify the water use behavior of rural residents and improve the current water use infrastructure. In this paper, the flow characteristics of several typical water use events are analyzed. The identification method of rural residents' water use behavior was studied. The specific work is as follows: the flow characteristics of different water use behaviors are extracted from the training set, and the identification models of different types of residents' water use behavior are established by using left to right hidden Markov model (Hidden Markov Model, HMM). The test data are input into the trained HMM to identify the residents' water use behavior, and the residents' water use events are identified according to the flow sequence of the residents' water consumption at the moment. In order to improve the accuracy of the recognition results of water use behavior using HMM, this paper combines HMM with time probability function, and obtains the recognition results of this method. The artificial neural network (Artificial NeuralNetworks,ANN) algorithm is selected, the (Back Propagation, BP) network structure of BP neural network is designed, the training parameters of BP network are determined, and the identification model of residents' water consumption behavior is established by using BP neural network. Finally, the test data are input into the trained BP neural network model to identify the behavior of residents' water use, and the recognition results are obtained. The results show that the combination model of HMM and time probability function can obtain more accurate identification results for different water flow patterns. The BP neural network model can be used to identify water events with similar flow patterns.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾勇;舒歡;胡江平;葛月月;;基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類[J];電子與信息學(xué)報(bào);2016年11期
2 Fengye Hu;Lu Wang;Shanshan Wang;Xiaolan Liu;Gengxin He;;A Human Body Posture Recognition Algorithm Based on BP Neural Network for Wireless Body Area Networks[J];中國通信;2016年08期
3 郭珍;;農(nóng)村居民飲用水安全問題研究——以G村為例[J];經(jīng)營管理者;2016年21期
4 YIN Hong;YANG Shuqiang;MA Shaodong;LIU Fei;CHEN Zhikun;;A Novel Parallel Scheme for Fast Similarity Search in Large Time Series[J];中國通信;2015年02期
5 黃振翔;彭波;吳娟;王儒朋;;基于DTW與混合判別特征檢測器的手勢識別[J];計(jì)算機(jī)工程;2014年05期
6 龍泉;劉永前;楊勇平;;基于粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的風(fēng)電機(jī)組齒輪箱故障診斷方法[J];太陽能學(xué)報(bào);2012年01期
7 錢X;馬旭東;戴先中;;基于抽象隱馬爾可夫模型的運(yùn)動行為識別方法[J];模式識別與人工智能;2009年03期
8 連可;黃建國;王厚軍;龍兵;;一種基于遺傳算法的SVM決策樹多分類策略研究[J];電子學(xué)報(bào);2008年08期
9 張麗君;吳曉娟;盛贊;亓磊;;基于HMM復(fù)雜場景下的行為識別方法[J];計(jì)算機(jī)工程;2008年07期
10 王海軍;白玫;賈兆立;覃麗萍;;基于二次優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的期貨價(jià)格預(yù)測[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2008年05期
相關(guān)碩士學(xué)位論文 前4條
1 馮桐;基于神經(jīng)網(wǎng)絡(luò)的手勢識別研究[D];北京理工大學(xué);2015年
2 梁鵬華;基于HMM的人體行為識別研究[D];蘭州交通大學(xué);2013年
3 徐輝;北京市城市居民生活用水影響因素跟蹤調(diào)查分析[D];首都師范大學(xué);2012年
4 徐利軍;基于HMM和神經(jīng)網(wǎng)絡(luò)的語音識別研究[D];湖北工業(yè)大學(xué);2012年
,本文編號:2430236
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2430236.html