基于馬爾可夫鏈的期望到達時間距離學習
[Abstract]:With the rapid development of mobile Internet and the widespread popularity of intelligent devices, all kinds of images and text data are expanding rapidly at an unprecedented speed, and various machine learning applications based on big data are booming. Focusing on the commonly used distance measurement techniques in machine learning algorithms, this paper mainly does the following work. First, the learning goal of the traditional Markov distance metric is to learn a symmetric positive semidefinite matrix and calculate the distance after projecting the data features into a new feature space, which implicitly measures the second-order relationship between the features. However, when there is high order correlation between data features, the effect of Markov distance measurement is not satisfactory. Based on the concept of expected arrival time in Markov chain, a new distance measurement method is proposed in this paper, which is expected arrival time distance. It makes use of the time series relation of state transition in Markov chain and measures the high order correlation between features implicitly. Secondly, a suitable probability transfer matrix T plays an important role in the measurement of the expected time of arrival (DOA). In order to learn from training data automatically by using classification discriminant information, an optimization algorithm based on gradient descent, LED., is proposed in this paper. Then, in order to solve the shortcomings of high complexity and low training efficiency of the optimization algorithm, an efficiency optimization algorithm, LED-SGD., is proposed under the setting of incremental learning. It takes advantage of the low rank update of matrix in the learning process, greatly reduces the complexity of the algorithm and improves the training efficiency. Thirdly, in this paper, three image data sets and two text data sets are compared with the Mahalanobis distance measurement algorithm and the expected arrival time measurement algorithm. It is proved that the expected arrival time measurement algorithm is superior to the traditional Markov distance measurement algorithm. At the same time, the understandability experiments on the image and text data sets show that the probability transfer matrix T, which is learned by the LED algorithm, captures the semantic information contained in the data to a certain extent.
【學位授予單位】:南京大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41;TP181
【相似文獻】
相關期刊論文 前9條
1 陳萬勝;用到達時間對發(fā)射機定位[J];艦船電子對抗;1995年06期
2 王發(fā)強,曹順湘,楊祥林;隨機增益孤子系統(tǒng)中孤子到達時間的抖動[J];中國激光;1997年08期
3 嚴華;;馬爾可夫鏈中首次到達時間概率密度函數值的簡化計算[J];計算機輔助工程;2006年02期
4 華驚宇;鄭志龍;任宏亮;孟利民;江彬;;無線網絡中基于到達時間和的球面相交定位算法[J];浙江工業(yè)大學學報;2013年05期
5 屈亞麗;周國標;;方位-到達時間聯(lián)合TMA的可測性分析[J];電光與控制;2007年02期
6 譚營,鄧超;回波到達時間精確估測的多尺度方法[J];電子科學學刊;1998年03期
7 朗聲;多徑傳送實驗DAB室內實驗報告(二)[J];廣播電視信息;1997年01期
8 韓國榮,王松煜,植強,劉剛;一種新的測時方法的理論與仿真[J];電子對抗技術;2002年05期
9 ;[J];;年期
相關會議論文 前1條
1 張樹霞;張玉忠;;離散到達時間的可控排序問題[A];中國運籌學會第九屆學術交流會論文集[C];2008年
相關博士學位論文 前1條
1 張樹霞;延誤與離散可控排序[D];華東師范大學;2007年
相關碩士學位論文 前5條
1 儲醉;基于馬爾可夫鏈的期望到達時間距離學習[D];南京大學;2017年
2 岳雅娟;到達時間與工期同序的串行批處理機排序問題[D];沈陽師范大學;2013年
3 申大明;帶到達時間的單位工件在線排序[D];浙江大學;2007年
4 羅虹;基于GPS的公交車輛到達時間預測技術研究[D];重慶大學;2007年
5 劉大維;基于到達時間差異的超聲波AGV精確定位[D];大連理工大學;2006年
,本文編號:2419747
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2419747.html