基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)估研究
[Abstract]:With the rapid development of economic globalization, especially financial globalization, the financial market of our country is affected by many factors, and the instability is becoming more and more obvious. Commercial banks face both opportunities and challenges, especially the challenge of credit risk. At present, the living environment of commercial banks is becoming more and more competitive. How to manage credit risks scientifically and effectively is directly related to the healthy development of commercial banks. Commercial banks in the stage of reform, transformation and development, the original credit risk management system has been difficult to apply, the traditional analysis method can not meet its rapid development in the new situation. Based on this, based on the basic characteristics of commercial banks at the present stage, this paper attempts to apply the neural network research method to the study of credit risk management in credit operations, in order to provide an effective risk assessment technology. In this paper, the existing commercial bank credit risk assessment model is firstly analyzed and demonstrated. On the basis of defining the connotation of the commercial bank credit risk, the factors affecting the credit risk are deeply studied. In order to sum up the shortcomings of credit risk management system. Furthermore, this paper extracts 17 indexes from five levels, and brings this index system into BP neural network, thus establishing a complete credit risk assessment model of commercial banks. Finally, through extensive data collection, the accuracy of the model is studied and proved by using MATLAB statistical software. The final results show that the risk assessment model constructed in this paper has a high accuracy, which is helpful for commercial banks to evaluate the credit risk of credit business effectively, and provides a reliable reference for credit risk management. It has certain research value.
【學(xué)位授予單位】:內(nèi)蒙古財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP183;F832.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬鴻雁;;基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行風(fēng)險(xiǎn)預(yù)警系統(tǒng)的研究[J];經(jīng)濟(jì)研究導(dǎo)刊;2014年24期
2 黃夢(mèng)宇;;基于BP神經(jīng)網(wǎng)絡(luò)的手機(jī)銀行風(fēng)險(xiǎn)預(yù)警模型研究[J];時(shí)代金融;2014年12期
3 朱虹;何澤恒;;基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)估模型研究[J];對(duì)外經(jīng)貿(mào);2013年09期
4 高希;王凱;杜玉蘭;;我國(guó)商業(yè)銀行的中小企業(yè)信用評(píng)級(jí)指標(biāo)體系構(gòu)建的研究綜述[J];經(jīng)營(yíng)管理者;2013年22期
5 羅剛飛;潘加順;;中國(guó)銀行業(yè)信用評(píng)價(jià)研究——基于16家上市銀行2007-2011年數(shù)據(jù)的分析[J];上海金融;2013年07期
6 王燕;;我國(guó)商業(yè)銀行信用評(píng)級(jí)指標(biāo)體系研究[J];金融發(fā)展評(píng)論;2013年03期
7 白雪梅;臧微;;信用風(fēng)險(xiǎn)對(duì)中國(guó)商業(yè)銀行成本效率的影響[J];財(cái)經(jīng)問(wèn)題研究;2013年02期
8 吳亞男;胡捷;;宏觀經(jīng)濟(jì)因素影響下的我國(guó)商業(yè)銀行信貸風(fēng)險(xiǎn)研究[J];金融經(jīng)濟(jì);2012年14期
9 曾箏;;商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)估方法研究[J];計(jì)算機(jī)仿真;2011年08期
10 孫寧華;劉楊;;中國(guó)商業(yè)銀行信用風(fēng)險(xiǎn)度量研究[J];成都理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2011年03期
相關(guān)博士學(xué)位論文 前2條
1 肖珉;我國(guó)企業(yè)集團(tuán)上市公司財(cái)務(wù)預(yù)警與信用風(fēng)險(xiǎn)評(píng)估研究[D];電子科技大學(xué);2012年
2 姜明輝;商業(yè)銀行個(gè)人信用評(píng)估組合預(yù)測(cè)方法研究[D];哈爾濱工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 張健;商業(yè)銀行個(gè)人信用評(píng)估模型研究[D];廣西大學(xué);2012年
2 倪微;我國(guó)商業(yè)銀行公司治理結(jié)構(gòu)對(duì)銀行信用風(fēng)險(xiǎn)影響的研究[D];西南財(cái)經(jīng)大學(xué);2012年
3 邵海宏;基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行客戶信用風(fēng)險(xiǎn)評(píng)價(jià)研究[D];哈爾濱工業(yè)大學(xué);2007年
4 王歡歡;基于BP神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)的商業(yè)銀行信用風(fēng)險(xiǎn)預(yù)警系統(tǒng)研究[D];東北財(cái)經(jīng)大學(xué);2005年
,本文編號(hào):2399315
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2399315.html