基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行信用風(fēng)險評估研究
[Abstract]:With the rapid development of economic globalization, especially financial globalization, the financial market of our country is affected by many factors, and the instability is becoming more and more obvious. Commercial banks face both opportunities and challenges, especially the challenge of credit risk. At present, the living environment of commercial banks is becoming more and more competitive. How to manage credit risks scientifically and effectively is directly related to the healthy development of commercial banks. Commercial banks in the stage of reform, transformation and development, the original credit risk management system has been difficult to apply, the traditional analysis method can not meet its rapid development in the new situation. Based on this, based on the basic characteristics of commercial banks at the present stage, this paper attempts to apply the neural network research method to the study of credit risk management in credit operations, in order to provide an effective risk assessment technology. In this paper, the existing commercial bank credit risk assessment model is firstly analyzed and demonstrated. On the basis of defining the connotation of the commercial bank credit risk, the factors affecting the credit risk are deeply studied. In order to sum up the shortcomings of credit risk management system. Furthermore, this paper extracts 17 indexes from five levels, and brings this index system into BP neural network, thus establishing a complete credit risk assessment model of commercial banks. Finally, through extensive data collection, the accuracy of the model is studied and proved by using MATLAB statistical software. The final results show that the risk assessment model constructed in this paper has a high accuracy, which is helpful for commercial banks to evaluate the credit risk of credit business effectively, and provides a reliable reference for credit risk management. It has certain research value.
【學(xué)位授予單位】:內(nèi)蒙古財經(jīng)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP183;F832.4
【參考文獻】
相關(guān)期刊論文 前10條
1 馬鴻雁;;基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行風(fēng)險預(yù)警系統(tǒng)的研究[J];經(jīng)濟研究導(dǎo)刊;2014年24期
2 黃夢宇;;基于BP神經(jīng)網(wǎng)絡(luò)的手機銀行風(fēng)險預(yù)警模型研究[J];時代金融;2014年12期
3 朱虹;何澤恒;;基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行信用風(fēng)險評估模型研究[J];對外經(jīng)貿(mào);2013年09期
4 高希;王凱;杜玉蘭;;我國商業(yè)銀行的中小企業(yè)信用評級指標體系構(gòu)建的研究綜述[J];經(jīng)營管理者;2013年22期
5 羅剛飛;潘加順;;中國銀行業(yè)信用評價研究——基于16家上市銀行2007-2011年數(shù)據(jù)的分析[J];上海金融;2013年07期
6 王燕;;我國商業(yè)銀行信用評級指標體系研究[J];金融發(fā)展評論;2013年03期
7 白雪梅;臧微;;信用風(fēng)險對中國商業(yè)銀行成本效率的影響[J];財經(jīng)問題研究;2013年02期
8 吳亞男;胡捷;;宏觀經(jīng)濟因素影響下的我國商業(yè)銀行信貸風(fēng)險研究[J];金融經(jīng)濟;2012年14期
9 曾箏;;商業(yè)銀行信用風(fēng)險評估方法研究[J];計算機仿真;2011年08期
10 孫寧華;劉楊;;中國商業(yè)銀行信用風(fēng)險度量研究[J];成都理工大學(xué)學(xué)報(社會科學(xué)版);2011年03期
相關(guān)博士學(xué)位論文 前2條
1 肖珉;我國企業(yè)集團上市公司財務(wù)預(yù)警與信用風(fēng)險評估研究[D];電子科技大學(xué);2012年
2 姜明輝;商業(yè)銀行個人信用評估組合預(yù)測方法研究[D];哈爾濱工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 張健;商業(yè)銀行個人信用評估模型研究[D];廣西大學(xué);2012年
2 倪微;我國商業(yè)銀行公司治理結(jié)構(gòu)對銀行信用風(fēng)險影響的研究[D];西南財經(jīng)大學(xué);2012年
3 邵海宏;基于BP神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行客戶信用風(fēng)險評價研究[D];哈爾濱工業(yè)大學(xué);2007年
4 王歡歡;基于BP神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)的商業(yè)銀行信用風(fēng)險預(yù)警系統(tǒng)研究[D];東北財經(jīng)大學(xué);2005年
,本文編號:2399315
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2399315.html