基于BP神經(jīng)網(wǎng)絡(luò)的VOCs混合氣體檢測研究
[Abstract]:In order to detect the mixed gases of volatile organic compounds (VOC), an electronic nose combined with sensor array and pattern recognition was used to study the problem. Sensor array is an array of side heat metal oxide semiconductor sensors made by ourselves in laboratory. It can form a complete response mode to VOC mixed gas. Sensor arrays in different VOC gas mixture response data sets are derived from the actual experimental test. In order to explore the problem in the experiment, a sensor testing system was set up, in which the VOC mixture gas was composed of four typical VOC gases, ethanol, acetone, formaldehyde and toluene. In order to develop an electronic nose for practical applications, the concentrations of each VOC and its combinations are randomly distributed in the mixture. In this paper, BP neural network is used to analyze and recognize the sensor array signals, and the mixture gas components and concentrations of VOC are estimated. BP neural network is established in MATLAB. The first thing we need to do is to preprocess the data normalization so as to prevent the metrological error caused by the quantity level. Then we also explore the number of neurons in the hidden layer and the activation function in the BP neural network. The effect of performance target and other structural parameters on the network prediction performance is studied and the optimal structure parameters suitable for this problem are debugged. According to the experimental results, the output node of BP neural network can give a continuous prediction of the concentration of each VOC in the target analyte, and within a certain error range, it can accomplish the quantitative analysis of the VOC mixture gas component. In order to improve the prediction accuracy of the system, the method of pattern recognition is improved in this paper. First, the decision tree classifies the VOC mixture data set according to the total amount of VOC, and then the BP neural network is based on different grades. The appropriate structural parameters were debugged and the samples in the grade were trained to estimate the concentration. The experimental results show that the maximum error of the improved model in each VOC concentration estimation is about 2 ppm.The accuracy of the improved model is better than that obtained from a single BP neural network. In addition, when the predicted concentration is higher than 20ppm, the relative error is less than 5. This study shows the potential of neural networks for quantitative analysis of VOC mixture concentrations. The improved model can accurately accomplish the quantitative analysis of VOC mixture gas components, which is the basis of developing electronic nose products for VOC gas recognition.
【學(xué)位授予單位】:寧波大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212.9;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Fengye Hu;Lu Wang;Shanshan Wang;Xiaolan Liu;Gengxin He;;A Human Body Posture Recognition Algorithm Based on BP Neural Network for Wireless Body Area Networks[J];中國通信;2016年08期
2 吳君章;趙盛翹;鄒小勇;賴燕華;;電子鼻在煙草行業(yè)中的研究與應(yīng)用進(jìn)展[J];分析測試學(xué)報(bào);2014年07期
3 路楊;李鵬珊;翟盼盼;;改進(jìn)BP神經(jīng)網(wǎng)絡(luò)在木構(gòu)古建筑中的壽命預(yù)測[J];計(jì)算機(jī)技術(shù)與發(fā)展;2014年05期
4 楊莉;;淺談目前的室內(nèi)空氣環(huán)境監(jiān)測[J];科技創(chuàng)新導(dǎo)報(bào);2013年34期
5 鄭秀亮;;VOC,不可忽視的環(huán)境污染因子[J];環(huán)境;2012年05期
6 王坤;;神經(jīng)網(wǎng)絡(luò)的特點(diǎn)及改進(jìn)方法綜述[J];科技廣場;2011年07期
7 馬宏偉;陳小通;祁昌禹;張紅霞;李工農(nóng);韓根亮;;氣體傳感器靜態(tài)測試系統(tǒng)電路設(shè)計(jì)[J];甘肅科學(xué)學(xué)報(bào);2010年04期
8 黃為勇;任子暉;童敏明;;多氣體的SVM數(shù)據(jù)融合定性識別方法[J];計(jì)算機(jī)工程與應(yīng)用;2009年09期
9 竺志大;王昌龍;;SnO_2基薄膜氣體傳感器制作與敏感性測試[J];機(jī)械制造;2008年12期
10 任先武;徐凌;周衛(wèi)宏;王元委;王振強(qiáng);;一種抗氫氣干擾的CO傳感器[J];傳感器與微系統(tǒng);2008年08期
相關(guān)博士學(xué)位論文 前2條
1 張紅梅;基于氣體傳感器陣列的幾種農(nóng)產(chǎn)品品質(zhì)檢測研究[D];浙江大學(xué);2007年
2 張覃軼;電子鼻:傳感器陣列、系統(tǒng)及應(yīng)用研究[D];華中科技大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 談力;基于相似日選取的小波極限學(xué)習(xí)機(jī)短期負(fù)荷預(yù)測模型研究[D];南京理工大學(xué);2015年
2 柳潤琴;基于氣體傳感器陣列的有害氣體檢測系統(tǒng)的研究[D];寧波大學(xué);2014年
3 王愛霞;基于神經(jīng)網(wǎng)絡(luò)的微網(wǎng)逆變器控制策略研究[D];蘭州理工大學(xué);2014年
4 王瑋;惡臭氣體檢測裝置多傳感器信號分析與處理[D];河北工業(yè)大學(xué);2014年
5 朱濤;基于“微井”結(jié)構(gòu)的氣體傳感器的制備[D];電子科技大學(xué);2013年
6 李瑛;基于氣體傳感器陣列的人工神經(jīng)網(wǎng)絡(luò)算法的設(shè)計(jì)及C語言實(shí)現(xiàn)[D];電子科技大學(xué);2012年
7 劉雪瑩;基于神經(jīng)網(wǎng)絡(luò)的混合氣體檢測系統(tǒng)研究[D];中國科學(xué)技術(shù)大學(xué);2011年
8 顧磊磊;ZnO納米結(jié)構(gòu)氣敏傳感器[D];復(fù)旦大學(xué);2011年
9 李華曜;電子鼻硬件系統(tǒng)及其評價(jià)[D];華中科技大學(xué);2008年
10 許杰;低阻低溫的ZrO_2基底TMA傳感器的研究和制作[D];華東師范大學(xué);2007年
,本文編號:2376616
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2376616.html