天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 自動化論文 >

基于布谷鳥搜索算法的圖像檢索系統(tǒng)設(shè)計

發(fā)布時間:2018-12-08 21:21
【摘要】:隨著互聯(lián)網(wǎng)的迅猛發(fā)展,海量的數(shù)據(jù)信息與人們的生活緊密相關(guān),圖片、視頻等多媒體信息迅速增加。如何從海量的信息庫中準(zhǔn)確、高效的搜索出所需的信息是信息化時代的熱點問題。傳統(tǒng)的搜索以文字為搜索對象,通過關(guān)鍵字、關(guān)鍵詞來實現(xiàn)信息搜索,基于文字的搜索技術(shù)已經(jīng)非常成熟。然而文字搜索的缺陷在于,無法搜索一些很難用文字描述的圖片信息,并且文字很難直觀全面的表達(dá)人們的搜索意圖;趦(nèi)容的圖像檢索(Content Based Image Retrieval,CBIR)技術(shù)就能夠很好的解決這個問題;趦(nèi)容的圖像檢索技術(shù)通過上傳圖片來代替文字搜索,計算機自動提取圖像的特征,然后從圖像庫中找出特征相似的圖像。目前,基于內(nèi)容的圖像檢索技術(shù)需要改進(jìn)的主要問題是提升搜索效率和減小“語義鴻溝”以提升搜索準(zhǔn)確率。本文以基于內(nèi)容的圖像檢索為基礎(chǔ)做出了以下幾方面的工作:(1)提取圖像特征構(gòu)建圖像特征庫,建立基于內(nèi)容的圖像檢索系統(tǒng)。本文以corel1000為圖像庫,提取了圖像的顏色矩、顏色相關(guān)圖特征以及LBP紋理特征,組成特征向量庫,并采用MATLAB為工具,建立基于內(nèi)容的圖像檢索系統(tǒng),實現(xiàn)了通過上傳圖片來搜索相關(guān)圖片的功能。(2)提出一種基于內(nèi)容和布谷鳥算法的圖像檢索算法,將連續(xù)空間尋優(yōu)的布谷鳥搜索算法應(yīng)用于離散的圖像特征空間進(jìn)行圖像搜索,提高了CBIR系統(tǒng)的搜索效率。布谷鳥搜索算法(CuckooSearch,CS),也叫杜鵑搜索,是由劍橋大學(xué)YANG等在2009年提出的一種群智能優(yōu)化算法,該算法參數(shù)少、搜索路徑較好、有較強的全局搜索能力。本文將CS算法應(yīng)用到基于內(nèi)容圖像檢索系統(tǒng)中,將圖像搜索問題看成尋找最優(yōu)解問題,利用CS算法搜索路徑較好、有較強的全局搜索能力的優(yōu)點在圖像特征空間尋優(yōu),最后通過實驗證明了該算法比遍歷搜索算法在基于圖像檢索系統(tǒng)中有更高的搜索效率。(3)提出一種基于布谷鳥搜索動態(tài)調(diào)整支持向量機參數(shù)的相關(guān)反饋算法,減小了基于內(nèi)容的圖像檢索系統(tǒng)中的“語義鴻溝”。首先,將相關(guān)反饋問題當(dāng)作二分類問題,采用支持向量機(Support Vector Machine,SVM)通過反饋結(jié)果對圖像進(jìn)行二分類,并通過CS算法動態(tài)搜索最佳SVM參數(shù),根據(jù)每次反饋結(jié)果自適應(yīng)調(diào)整支持向量機參數(shù)。通過實驗證明該算法比傳統(tǒng)的布谷鳥搜索算法、粒子群算法(Particle Swarm Optimization,PSO)以及遺傳算法(Genetic Algorithm,GA)讓支持向量機更快更準(zhǔn)確的實現(xiàn)分類,從而使得圖像檢索的相關(guān)反饋能在更少的反饋次數(shù)下得到更高的準(zhǔn)確率,提高了搜索準(zhǔn)確率。
[Abstract]:With the rapid development of the Internet, massive data and information are closely related to people's lives, pictures, video and other multimedia information is increasing rapidly. How to search the needed information accurately and efficiently from the massive information database is a hot issue in the information age. The traditional search takes the text as the search object, realizes the information search through the keyword, the text based search technology has been very mature. However, the defect of text search is that it is impossible to search for some image information that is difficult to describe in words, and it is difficult for text to express people's search intention directly and comprehensively. Content-Based Image Retrieval (Content Based Image Retrieval,CBIR) technology can solve this problem well. Content-Based Image Retrieval (CBIR) replaces text search by uploading images. The computer automatically extracts the features of the images and then finds the images with similar features from the image database. At present, the main problems that need to be improved in content-based image retrieval technology are to improve the search efficiency and reduce the "semantic gap" in order to improve the search accuracy. In this paper, based on content-based image retrieval, the following works have been done: (1) extracting image features to construct image signature database and establishing content-based image retrieval system. In this paper, the color moment, color correlation image feature and LBP texture feature of the image are extracted by using corel1000 as the image database, and the feature vector library is formed, and the content-based image retrieval system is established by using MATLAB as the tool. The function of searching related images by uploading pictures is realized. (2) an image retrieval algorithm based on content and cuckoo algorithm is proposed. The Cuckoo search algorithm with continuous space optimization is applied to the discrete image feature space for image search, which improves the search efficiency of CBIR system. Cuckoo search algorithm (CuckooSearch,CS), also called cuckoo search, is a population intelligent optimization algorithm proposed by YANG of Cambridge University in 2009. The algorithm has few parameters, good search path and strong global search ability. In this paper, the CS algorithm is applied to the content-based image retrieval system, and the image search problem is regarded as the problem of finding the optimal solution. The advantage of the CS algorithm is that the search path is better and the global search ability is stronger. Finally, experiments show that the algorithm is more efficient than the traversal search algorithm in image retrieval system. (3) A correlation feedback algorithm based on cuckoo search to dynamically adjust support vector machine parameters is proposed. The semantic gap in content-based image retrieval system is reduced. Firstly, the correlation feedback problem is regarded as a two-classification problem. The support vector machine (Support Vector Machine,SVM) is used to classify the images by feedback results, and the optimal SVM parameters are dynamically searched by the CS algorithm. The parameters of support vector machine are adaptively adjusted according to the result of each feedback. Experimental results show that the proposed algorithm makes the classification faster and more accurate than the traditional Cuckoo search algorithm, particle swarm optimization (Particle Swarm Optimization,PSO) and genetic algorithm (Genetic Algorithm,GA). Thus, the correlation feedback of image retrieval can get higher accuracy with less feedback, and improve the search accuracy.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TP18

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ZHOU Quan;Shafiq ur Rehman;ZHOU Yu;WEI Xin;WANG Lei;ZHENG Baoyu;;Face Recognition Using Dense SIFT Feature Alignment[J];Chinese Journal of Electronics;2016年06期

2 孔超;張化祥;劉麗;;基于興趣區(qū)域特征融合的半監(jiān)督圖像檢索算法[J];山東大學(xué)學(xué)報(工學(xué)版);2014年03期

3 張永椺;汪鐳;吳啟迪;;動態(tài)適應(yīng)布谷鳥搜索算法[J];控制與決策;2014年04期

4 柳新妮;馬苗;;布谷鳥搜索算法在多閾值圖像分割中的應(yīng)用[J];計算機工程;2013年07期

5 鄭洪清;周永權(quán);;一種自適應(yīng)步長布谷鳥搜索算法[J];計算機工程與應(yīng)用;2013年10期

6 林晨航;潘志斌;鄒彬;;基于全局和局部顏色特征的圖像檢索方法[J];微電子學(xué)與計算機;2012年04期

7 章慧;龔聲蓉;;基于改進(jìn)的Sobel算子最大熵圖像分割研究[J];計算機科學(xué);2011年12期

8 王凡;賀興時;王燕;;基于高斯擾動的布谷鳥搜索算法[J];西安工程大學(xué)學(xué)報;2011年04期

9 萬瑋;馮學(xué)智;肖鵬峰;趙利民;;基于傅里葉描述子的高分辨率遙感圖像地物形狀特征表達(dá)[J];遙感學(xué)報;2011年01期

10 劉琳;李仁發(fā);李仲生;劉鈺峰;;基于內(nèi)容圖像檢索中的相關(guān)反饋技術(shù)研究[J];計算機應(yīng)用研究;2009年07期

相關(guān)博士學(xué)位論文 前1條

1 龍建武;圖像閾值分割關(guān)鍵技術(shù)研究[D];吉林大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 陳娜;基于改進(jìn)布谷鳥算法的圖像配準(zhǔn)和融合中的參數(shù)優(yōu)化[D];河北大學(xué);2016年

2 黃曉慧;基于布谷鳥算法的小波神經(jīng)網(wǎng)絡(luò)短時交通流預(yù)測研究[D];西南交通大學(xué);2016年

3 張鈺皎;基于感興趣區(qū)域和SVM相關(guān)反饋的圖像檢索方法研究[D];蘭州理工大學(xué);2016年

4 任璐;模糊布谷鳥搜索算法[D];西安工程大學(xué);2016年

5 朱華東;基于內(nèi)容的圖像檢索研究[D];江南大學(xué);2015年

6 薛益鴿;改進(jìn)的布谷鳥搜索算法及其應(yīng)用研究[D];西南大學(xué);2015年

7 褚千馳;基于雙詞袋模型的圖像檢索系統(tǒng)[D];吉林大學(xué);2015年

8 朱凌云;融合多種內(nèi)容特征和相關(guān)反饋技術(shù)的圖像檢索系統(tǒng)研究[D];重慶大學(xué);2015年

9 候慧超;布谷鳥優(yōu)化算法改進(jìn)及與粒子群算法融合研究[D];渤海大學(xué);2014年

10 王龍;圖像紋理特征提取及分類研究[D];中國海洋大學(xué);2014年



本文編號:2369013

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2369013.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a5920***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com