ZnO傳感器與色譜分離相結(jié)合的POPs快速檢測與識(shí)別方法
[Abstract]:Persistent organic pollutants (pops) are toxic chemicals synthesised by human beings which can persist in the natural environment and cause harm to human beings and other organisms. The massive use of such substances by human beings has led to global environmental pollution. Also because persistent organic pollutants are persistent, bioaccumulative and mobile, leading to the global diffusion and accumulation of persistent organic pollutants in organisms, These conditions exacerbate the environmental and human hazards of persistent organic pollutants. Therefore, the establishment of a persistent organic pollutant monitoring system is particularly important. It is necessary to develop equipment for the detection of persistent organic pollutants in order to improve the efficiency and accuracy of the detection of persistent organic pollutants, in view of the actual situation of environmental hazards caused by persistent organic pollutants, To make a new contribution to the detection of persistent organic pollutants. In this paper, a portable detection instrument for persistent organic pollutants (pops) is designed and manufactured, which can be used to detect toxaphene persistent organic pollutants (pops) and interfering substances. The method of ZnO sensor combined with chromatographic separation, combined with computer technology, is used to detect persistent organic pollutants. It has the advantages of convenience, rapidity, high accuracy and so on. Before the pattern feature extraction and training recognition of the sample data detected by the instrument, we normalize the data to eliminate the influence caused by the external factors, such as dimension, sample concentration, environmental temperature, and so on. PCA algorithm and LDA algorithm are used in feature extraction of data. Finally, a classifier is trained by SVM and radial basis function (RBF) artificial neural network according to the extracted pattern features, and the samples are classified and identified. The experimental results show that the system can be used to classify and identify persistent organic pollutants and has a good classification effect.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:X830;TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李艷玲;李民強(qiáng);劉術(shù)軍;余道洋;;易燃液體殘留物實(shí)時(shí)檢測系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J];儀表技術(shù);2014年06期
2 嚴(yán)林;陸安祥;欒云霞;任東;王紀(jì)華;;基于圖像處理的農(nóng)藥殘留速測卡快速檢測[J];食品安全質(zhì)量檢測學(xué)報(bào);2014年03期
3 周麗;董亮;史雙昕;張利飛;張秀藍(lán);楊文龍;李玲玲;黃業(yè)茹;;液相色譜-串聯(lián)質(zhì)譜法測定水環(huán)境中的十氯酮[J];色譜;2014年03期
4 應(yīng)攀;沈海斌;;基于PCA+LDA的特征融合的3D手寫識(shí)別特征集取技術(shù)[J];電子技術(shù);2013年03期
5 李玉美;班睿;;我國水環(huán)境中持久性有機(jī)污染物污染的現(xiàn)狀及研究進(jìn)展[J];貴州農(nóng)業(yè)科學(xué);2011年01期
6 張蕾;;基于RBF神經(jīng)網(wǎng)絡(luò)的中醫(yī)藥科研績效評(píng)價(jià)方法分析[J];無線互聯(lián)科技;2010年04期
7 成云飛;陳泓;沙淼淼;楊明;;易制毒化學(xué)品檢測儀[J];警察技術(shù);2009年02期
8 楊明;疏天民;成云飛;;氣相色譜易制毒化學(xué)品檢測儀的研制[J];自動(dòng)化與儀器儀表;2009年01期
9 劉輝;楊俊安;許學(xué)忠;;基于ICA和HMM的低空聲目標(biāo)識(shí)別方法[J];聲學(xué)技術(shù);2008年06期
10 石自強(qiáng);李海峰;孫佳音;;基于SVM的流行音樂中人聲的識(shí)別[J];計(jì)算機(jī)工程與應(yīng)用;2008年25期
相關(guān)碩士學(xué)位論文 前2條
1 李艷玲;火災(zāi)現(xiàn)場易燃液體殘留物傳感檢測與識(shí)別的方法[D];中國科學(xué)技術(shù)大學(xué);2014年
2 劉慧;基于KNN的中文文本分類算法研究[D];西南交通大學(xué);2010年
,本文編號(hào):2368729
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2368729.html