3D打印精度及運動控制技術(shù)研究
[Abstract]:3D printing is a new material-increasing manufacturing technology, and high-precision printing may lead to a new industrial revolution. With the development of 3D printing technology, 3D printing technology has gradually entered the civil market, attracting the attention and interest of all circles at home and abroad. Taking (Fused deposition modeling,FDM as an example, the paper discusses the principle of 3D printer and analyzes the factors that affect the printing accuracy. From the point of view of motion control, the idea of motion subdivision control of 3D printer stepping motor is put forward, and the traditional PID, fuzzy PID neural network PID control algorithm is analyzed and compared. The main work is as follows: first, the material that affects the printing accuracy is analyzed. Technology, step motor motion control and other factors, and focus on the motion control of 3D printing accuracy; Secondly, the stepping motor is the executive component of the 3D printing system, which determines the precision of the motion control system. The controllability of two-phase hybrid stepping motor is analyzed by establishing a two-phase hybrid stepping motor model. In order to improve the control precision, the idea of step motor subdivision control is proposed. Thirdly, the fuzzy PID and neural network PID subdivision control algorithm of step motor is proposed, and the simulation results verify the proposed control algorithm. The simulation results show that compared with the traditional PID control algorithm, the proposed algorithm improves the response speed and robustness, and provides a theoretical basis for improving the accuracy of 3D printing.
【學(xué)位授予單位】:貴州師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP273;TP183;TP391.73
【參考文獻】
相關(guān)期刊論文 前10條
1 夏爽;李麗宏;;基于PSO-RBF神經(jīng)網(wǎng)絡(luò)在溫室溫度預(yù)測中的應(yīng)用[J];計算機工程與設(shè)計;2017年03期
2 申超群;楊靜;;溫室溫度控制系統(tǒng)的RBF神經(jīng)網(wǎng)絡(luò)PID控制[J];控制工程;2017年02期
3 季晨雪;胡圣波;;3D打印機的定位模糊控制[J];貴州師范大學(xué)學(xué)報(自然科學(xué)版);2017年01期
4 竇立謙;田曉笛;;基于自適應(yīng)RBF神經(jīng)網(wǎng)絡(luò)的可重復(fù)使用運載器再入段姿態(tài)控制[J];航天控制;2017年01期
5 周佳;盧少武;周鳳星;;基于RBF神經(jīng)網(wǎng)絡(luò)的永磁同步電機速度PI-IP控制[J];組合機床與自動化加工技術(shù);2017年01期
6 李書玲;劉蓉;劉紅;;改進型RBF神經(jīng)網(wǎng)絡(luò)的多標簽算法研究[J];計算機科學(xué);2015年04期
7 譚秀騰;郭小定;李小龍;余亮;;基于ARM的桌面型3D打印機控制系統(tǒng)設(shè)計[J];應(yīng)用科技;2014年05期
8 張穎;楊繼全;;三維打印產(chǎn)業(yè)區(qū)域發(fā)展現(xiàn)狀及思考[J];機械設(shè)計與制造工程;2014年06期
9 單文桃;陳小安;合燁;周明紅;劉俊峰;;基于免疫遺傳算法的模糊徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)在高速電主軸中的應(yīng)用[J];機械工程學(xué)報;2013年23期
10 叢自龍;袁朝輝;楊芳;;基于模糊自適應(yīng)PID控制的定位系統(tǒng)設(shè)計[J];機床與液壓;2013年07期
相關(guān)碩士學(xué)位論文 前5條
1 安軍濤;基于模糊神經(jīng)網(wǎng)絡(luò)的智能PID控制器研究與設(shè)計[D];武漢理工大學(xué);2010年
2 張洪波;寬速自適應(yīng)細分步進電機驅(qū)動器研究[D];西北工業(yè)大學(xué);2007年
3 趙晗;步進電機集成式驅(qū)動器的設(shè)計[D];哈爾濱工業(yè)大學(xué);2006年
4 畢紹新;步進電機驅(qū)動控制的應(yīng)用研究[D];天津大學(xué);2003年
5 張靖;步進電機細分驅(qū)動器的研究[D];河北農(nóng)業(yè)大學(xué);2003年
,本文編號:2329515
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2329515.html