高精度編碼器數(shù)字化接口的研究與實現(xiàn)
[Abstract]:The sinusoidal encoder is a precise sensor for measuring angular displacement and angular velocity. With the increasing demand for resolution and precision in numerical control system and modern industrial control system, it can not meet the demand of real-time feedback precision of industrial control system by relying only on original resolution or quaternion counting. Require higher resolution and accuracy of encoder position, rotational speed and other feedback signals. There are two methods to improve the resolution of encoder: hardware and software. Due to the very high requirement of hardware method to process design, the software method is used to subdivide the encoder signal electronically. To improve the resolution and accuracy of encoder signals. In order to improve the resolution and accuracy of position information of encoder and obtain more accurate information of motor position and speed, a signal processing system of encoder based on improved coordinate rotation digital calculation (CORDIC) algorithm is designed in this paper. First, the encoder signal is processed by signal conditioning circuit, such as differential amplification and shaping filtering, then the coarse code information is obtained by quaternion counting, and then the refined interpolation information is obtained by using the electronic subdivision method based on the improved CORDIC algorithm. Finally, the coarse code and the precision information are integrated to obtain high resolution and high precision position information of motor angle. In terms of velocimetry, the variable M method and the full differential method are used. In the aspect of communication, the interface module and upper computer communicate through CANopen protocol. A 16-bit AD converter and a 2048-line sinusoidal encoder are used. The angle of the encoder reaches 27 bits high resolution. The interface module of encoder is tested. The results show that the precision of position value measured by four times frequency is about 100 angle seconds, and the position value precision obtained by electronic subdivision method is about 60 angle seconds. The relative error of total differential velocimetry is smaller than that of variable M velocimetry, and the accuracy is higher.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳雷;洪占勇;;增量式編碼器信號處理系統(tǒng)設(shè)計及仿真測試[J];現(xiàn)代電子技術(shù);2015年23期
2 劉小寧;謝宜壯;陳禾;閆雯;陳冬;;CORDIC算法的優(yōu)化及實現(xiàn)[J];北京理工大學(xué)學(xué)報;2015年11期
3 韋湘宜;丁紅昌;曹國華;;光電編碼器檢測技術(shù)的研究現(xiàn)狀及發(fā)展趨勢[J];電子科技;2015年09期
4 周濟(jì);;智能制造——“中國制造2025”的主攻方向[J];中國機(jī)械工程;2015年17期
5 張道勇;黃楊根;張輝;;編碼器正余弦信號細(xì)分技術(shù)應(yīng)用研究[J];機(jī)床與液壓;2015年16期
6 王少君;劉永強(qiáng);楊紹普;廖英英;郝高巖;;基于光電編碼器的測速方法研究及實驗驗證[J];自動化與儀表;2015年06期
7 王海勇;鮑遠(yuǎn)慧;;一種變M/T測速方法的研究與實驗[J];測控技術(shù);2014年05期
8 林長友;梅恒;;光柵編碼器發(fā)展現(xiàn)狀分析與展望[J];世界制造技術(shù)與裝備市場;2014年01期
9 馮英翹;萬秋華;宋超;孫瑩;趙長海;;基于坐標(biāo)旋轉(zhuǎn)數(shù)字計算算法的小型光電編碼器細(xì)分[J];光學(xué)學(xué)報;2014年02期
10 劉海龍;肖海峰;賀昱曜;;基于正余弦編碼器的位置細(xì)分技術(shù)綜述[J];微特電機(jī);2013年12期
相關(guān)碩士學(xué)位論文 前8條
1 王亞洲;光電編碼器莫爾條紋測速方法研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2015年
2 江凌峰;開關(guān)電源電路設(shè)計及其高壓功率器件研制[D];廈門大學(xué);2014年
3 楊曉航;CANopen從站通訊模塊的開發(fā)與應(yīng)用[D];南京理工大學(xué);2014年
4 趙文峰;基于閉環(huán)反饋算法的高精度編碼器細(xì)分系統(tǒng)設(shè)計[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2013年
5 劉仲杰;CANopen協(xié)議在嵌入式系統(tǒng)中的應(yīng)用研究[D];哈爾濱理工大學(xué);2013年
6 黃明亮;基于eCos和Web服務(wù)器的遠(yuǎn)程電機(jī)控制系統(tǒng)設(shè)計與實現(xiàn)[D];蘇州大學(xué);2012年
7 陶仁浩;基于增量式光電編碼器的高精度位置檢測技術(shù)研究[D];南京航空航天大學(xué);2012年
8 賴世勛;基于CANopen和μC/OS-Ⅱ的CAN網(wǎng)絡(luò)通信技術(shù)研究[D];合肥工業(yè)大學(xué);2011年
,本文編號:2325550
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2325550.html