多重推進(jìn)式鞭毛泳動(dòng)磁微機(jī)器人系統(tǒng)研究
[Abstract]:Microrobots play a more and more important role in biomedical engineering and micro-nano manufacturing such as targeted drug delivery, microsurgery and micro-nano operation, and have great potential for development. Compared with spiral micro robot, flagellum micro robot has the advantages of simple structure and good flexibility. However, the current flagellum magnetic microrobot drive mode is single, usually can only be driven by a single propulsion mode, so the environmental adaptability is poor. Because of the complex and changeable working environment of micro-robot in biomedical and micro-nano manufacturing fields, it is of great significance to study multi-propulsion micro-robot with strong environmental adaptability. In this paper, a multi-push flagellated swimming microrobot is proposed, which can be driven forward by magnetic gradient field, rotating magnetic field and oscillating magnetic field, respectively. The dynamic models of magnetic microrobot under three kinds of magnetic propulsion modes in liquid environment are established, and the control strategy of the micro robot is proposed on the basis of establishing a magnetic drive system suitable for multiple propulsion coils. The experimental study of multi-push flagellum swimming-magnetic micro-robot was carried out. Firstly, a multi-push micro-robot for flagellating swimming is proposed. Based on the theory of fluid resistance in liquid environment and the characteristics of magnetic field, the dynamic models of flagellated swimming magnetic microrobot under magnetic gradient field, rotating magnetic field and oscillating magnetic field are established respectively. On this basis, the effects of parameters such as flagellum shape size, elastic modulus and flagellum inclination angle on the motion speed and energy conversion efficiency of the micro robot are analyzed. The deformation law of flagella driven by different magnetic fields was obtained by simulation. Secondly, according to the characteristics of multi-push flagellated swimming microrobot, a driving module is constructed for this kind of microrobot. Based on the Helmholtz coil drive system, an effective conversion module is added, so that the traditional Helmholtz coil can also produce gradient magnetic field to meet the need of multiple propulsion of the magnetic micro-robot. The generation methods of magnetic field are analyzed and compared, and the distribution characteristics of magnetic field are obtained by using the COMSOL software of multi-physical field simulation. According to the simulation results, a corresponding control program is developed to generate magnetic gradient field, rotating magnetic field and oscillating magnetic field respectively, and the real situation of the magnetic field is tested by experiments. Finally, the experimental study of multi-push flagellum swimming micro-robot is carried out. Based on the previously established drive system, the multi-push magnetic microrobot with various parameters is fabricated, and the experimental study of the micro-robot driven by various magnetic fields with different parameters is carried out. The experimental results about the correlation energy of the micro robot are compared with the theoretical results. The experimental results show that, driven by rotating magnetic field or swinging magnetic field, multi-push flagellated swimming microrobot is more suitable for moving in glycerol with higher viscosity, but driven by magnetic gradient field. It is more suitable for moving in liquid with lower viscosity. In the complex liquid environment with variable viscosity, the multi-push flagellated swimming magnetic micro robot proposed in this paper has better adaptability.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 毛玲;李振波;陳佳品;;基于相對(duì)定位的多移動(dòng)微機(jī)器人協(xié)作定位方法[J];傳感器與微系統(tǒng);2018年08期
2 高勝;李海超;杜愛國;;用于核環(huán)境管道維修的宏-微機(jī)器人遙控焊接系統(tǒng)的慣性補(bǔ)償[J];焊接學(xué)報(bào);2014年07期
3 李江昊;李振波;陳佳品;;一種用于微型工廠的毫米級(jí)全方位移動(dòng)微機(jī)器人設(shè)計(jì)與分析[J];機(jī)器人;2007年05期
4 鐘映春;;泳動(dòng)微機(jī)器人的動(dòng)力學(xué)模型研究[J];機(jī)械設(shè)計(jì)與研究;2006年03期
5 陳東海,張緒平,余躍慶;柔性宏-微機(jī)器人可補(bǔ)償性分析[J];機(jī)械制造;2005年09期
6 鐘映春,楊宜民;泳動(dòng)微機(jī)器人運(yùn)動(dòng)速度控制研究[J];機(jī)床與液壓;2004年04期
7 鐘映春,楊宜民;泳動(dòng)微機(jī)器人泳動(dòng)模型的建立研究[J];機(jī)床與液壓;2003年01期
8 鐘映春,楊宜民;泳動(dòng)微機(jī)器人的設(shè)計(jì)及靜力學(xué)分析[J];機(jī)械制造;2003年02期
9 譚湘強(qiáng),鐘映春,楊宜民;液體中運(yùn)動(dòng)微機(jī)器人的研制[J];現(xiàn)代制造工程;2003年04期
10 M.A.Perino;R.Licata;張康華;;行星際探測用的微機(jī)器人方案[J];控制工程;2001年02期
相關(guān)會(huì)議論文 前8條
1 譚湘強(qiáng);鐘映春;楊宜民;;液體中運(yùn)動(dòng)微機(jī)器人的設(shè)計(jì)與實(shí)驗(yàn)[A];第二十一屆中國控制會(huì)議論文集[C];2002年
2 湯曉華;劉九慶;陳強(qiáng);馬巖;張文增;張國賢;;宏-微機(jī)器人及其在林業(yè)與木工機(jī)械的應(yīng)用[A];當(dāng)代林木機(jī)械博覽(2005)[C];2006年
3 陳佳品;李振波;唐曉寧;;毫米級(jí)全方位移動(dòng)機(jī)器人及其微裝配系統(tǒng)研究[A];中國微米、納米技術(shù)第七屆學(xué)術(shù)會(huì)年會(huì)論文集(二)[C];2005年
4 鄭亞青;吳建坡;;岸邊集裝箱宏-微起重機(jī)器人的機(jī)構(gòu)、結(jié)構(gòu)設(shè)計(jì)及運(yùn)動(dòng)仿真[A];2009海峽兩岸機(jī)械科技論壇論文集[C];2009年
5 陳啟軍;王月娟;;宏-微機(jī)器人運(yùn)動(dòng)學(xué)冗余分解及關(guān)節(jié)限制避免[A];第二十二屆中國控制會(huì)議論文集(下)[C];2003年
6 徐君書;徐長龍;徐得名;楊雪霞;;管道無纜機(jī)器人微波供能接收天線的研究[A];2003'全國微波毫米波會(huì)議論文集[C];2003年
7 徐君書;徐長龍;徐得名;;管道探測微機(jī)器人微波輸能系統(tǒng)[A];2002海峽兩岸三地?zé)o線科技研討會(huì)論文集[C];2002年
8 原福松;王勇;張耀鵬;孫玉春;王黨校;呂培軍;;口腔臨床微機(jī)器人牙體預(yù)備系統(tǒng)及其應(yīng)用探討[A];第十五次全國口腔醫(yī)學(xué)計(jì)算機(jī)應(yīng)用學(xué)術(shù)研討會(huì)會(huì)議手冊[C];2017年
相關(guān)重要報(bào)紙文章 前2條
1 “863”計(jì)劃機(jī)器人技術(shù)主題專家組;微機(jī)器人滲入微觀世界[N];計(jì)算機(jī)世界;2002年
2 采寫 本報(bào)記者 袁暢 游璇鈺 黃秀霞 (統(tǒng)籌 本報(bào)記者 袁暢);“最聽話的手機(jī)”或能陪您聊天[N];惠州日報(bào);2014年
相關(guān)博士學(xué)位論文 前4條
1 李江昊;基于毫米級(jí)移動(dòng)微機(jī)器人的微裝配系統(tǒng)運(yùn)動(dòng)控制與路徑規(guī)劃研究[D];上海交通大學(xué);2009年
2 譚湘強(qiáng);液體中微機(jī)器人的運(yùn)動(dòng)機(jī)理與實(shí)驗(yàn)研究[D];廣東工業(yè)大學(xué);2002年
3 雷勇;基于變幾何桁架機(jī)構(gòu)的宏-微機(jī)器人及其控制的研究[D];四川大學(xué);2002年
4 鐘映春;基于泳動(dòng)方式的微機(jī)器人研究[D];廣東工業(yè)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 翟文賀;多重推進(jìn)式鞭毛泳動(dòng)磁微機(jī)器人系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2017年
2 梁楠;球形微機(jī)器人控制及運(yùn)動(dòng)特性的研究[D];天津理工大學(xué);2017年
3 鄭亮;一種基于仿生多纖毛的磁力驅(qū)動(dòng)微機(jī)器人系統(tǒng)設(shè)計(jì)和研究[D];蘇州大學(xué);2016年
4 徐慧超;螺旋推進(jìn)泳動(dòng)磁微機(jī)器人系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2016年
5 李江成;毫米級(jí)多微機(jī)器人蟻群算法控制系統(tǒng)研究[D];上海交通大學(xué);2007年
6 張釗;基于旋轉(zhuǎn)磁場的膠囊微機(jī)器人驅(qū)動(dòng)方法研究[D];大連理工大學(xué);2008年
7 杜愛國;宏—微機(jī)器人管道遙控焊接的自適應(yīng)力控制研究[D];哈爾濱工業(yè)大學(xué);2011年
8 王乃葭;微機(jī)器人裝配系統(tǒng)顯微視覺相關(guān)技術(shù)的研究[D];上海交通大學(xué);2009年
9 劉丹;微機(jī)器人膠囊無線能量傳輸系統(tǒng)的優(yōu)化設(shè)計(jì)與實(shí)驗(yàn)研究[D];華南理工大學(xué);2016年
10 嚴(yán)孝男;ICPF的研究及在水下爬行微機(jī)器人中的應(yīng)用[D];哈爾濱工程大學(xué);2009年
,本文編號(hào):2316022
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2316022.html