基于計(jì)算機(jī)博弈的五子棋算法研究
[Abstract]:Artificial intelligence is the hottest topic in recent years, a variety of artificial intelligence products emerge in endlessly. The machine game, which is a branch of it, is also valued. In recent years, the country has also attached great importance to this field, supporting the promotion of a lot of computer games. Machine game is to simulate human intelligence to solve practical problems. This is also the practical application value of the study. This design takes Gobang in chess as the research object, studies the existing research results, synthesizes the international frontier research trend, carries on the main research design to the search algorithm in the game process. The following is the main design work. Firstly, the computer game algorithm is studied and studied. Understand and study the development of Gobang, chess rules and rules. Frame design and chess game generation, chess display, time-timing interface design for the whole system. Secondly, according to the rules of Gobang, the game tree search algorithm proposed in this paper is implemented. Based on this, the algorithm is improved. The method of iterative deepening and window searching is introduced into Alpha-Beta pruning algorithm, which is much better than the initial program. Evaluation function also plays an important role in the whole system. Finally, in order to improve the chess skill of the system greatly, aiming at the problem that the search effect is not ideal, the method of using machine learning to replace the search algorithm is put forward. In this paper, we design a program environment in which we can play chess independently, which can be used to complete the game independently. And experimental results show that chess has a great improvement, and has a certain significance and use value.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田淵棟;;阿法狗圍棋系統(tǒng)的簡(jiǎn)要分析[J];自動(dòng)化學(xué)報(bào);2016年05期
2 鄭南寧;;人工智能面臨的挑戰(zhàn)[J];自動(dòng)化學(xué)報(bào);2016年05期
3 龔怡宏;;人工智能是否終將超越人類智能——基于機(jī)器學(xué)習(xí)與人腦認(rèn)知基本原理的探討[J];人民論壇·學(xué)術(shù)前沿;2016年07期
4 嚴(yán)文蕃;李娜;;互聯(lián)網(wǎng)時(shí)代的教學(xué)創(chuàng)新與深度學(xué)習(xí)——美國(guó)的經(jīng)驗(yàn)與啟示[J];遠(yuǎn)程教育雜志;2016年02期
5 李學(xué)俊;王小龍;吳蕾;劉慧婷;;六子棋中基于局部“路”掃描方式的博弈樹生成算法[J];智能系統(tǒng)學(xué)報(bào);2015年02期
6 劉建偉;劉媛;羅雄麟;;深度學(xué)習(xí)研究進(jìn)展[J];計(jì)算機(jī)應(yīng)用研究;2014年07期
7 廖景亮;陳冬強(qiáng);;機(jī)器博弈中搜索算法的研究[J];福建電腦;2012年10期
8 程宇;雷小鋒;;五子棋中Alpha-Beta搜索算法的研究與改進(jìn)[J];計(jì)算機(jī)工程;2012年17期
9 張佳佳;;五子棋對(duì)戰(zhàn)平臺(tái)的設(shè)計(jì)與實(shí)現(xiàn)[J];電腦知識(shí)與技術(shù);2012年22期
10 呂艷輝;宮瑞敏;;計(jì)算機(jī)博弈中估值算法與博弈訓(xùn)練的研究[J];計(jì)算機(jī)工程;2012年11期
相關(guān)碩士學(xué)位論文 前8條
1 張玉琪;基于靜態(tài)評(píng)估的計(jì)算機(jī)圍棋UCT算法改進(jìn)研究[D];南昌航空大學(xué);2015年
2 于雷;基于Google Speech-API的簡(jiǎn)單語音對(duì)話系統(tǒng)的實(shí)現(xiàn)[D];華南理工大學(xué);2012年
3 姜文軍;網(wǎng)絡(luò)游戲中人工智能的研究及應(yīng)用[D];上海交通大學(xué);2013年
4 邢勝;基于數(shù)據(jù)庫自學(xué)習(xí)的中國(guó)象棋研究[D];河北大學(xué);2009年
5 趙紅強(qiáng);合作博弈解及其應(yīng)用研究[D];吉林大學(xué);2008年
6 韓江波;中國(guó)宏觀經(jīng)濟(jì)現(xiàn)實(shí)的博弈研究[D];武漢科技大學(xué);2008年
7 劉明慧;計(jì)算機(jī)博弈的估值方法研究[D];東北大學(xué);2008年
8 王騏;博弈樹搜索算法的研究及改進(jìn)[D];浙江大學(xué);2006年
,本文編號(hào):2315818
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2315818.html