基于自適應(yīng)混沌變異粒子群優(yōu)化算法的旋轉(zhuǎn)彈丸氣動(dòng)參數(shù)辨識(shí)
發(fā)布時(shí)間:2018-11-06 15:17
【摘要】:將最大似然準(zhǔn)則應(yīng)用于高速旋轉(zhuǎn)彈丸的氣動(dòng)參數(shù)辨識(shí)問(wèn)題中,提出一種新的自適應(yīng)混沌變異粒子群算法求解該準(zhǔn)則下的氣動(dòng)參數(shù)最優(yōu)解,進(jìn)而得到彈丸的氣動(dòng)參數(shù)。該算法通過(guò)自適應(yīng)調(diào)整慣性權(quán)重、利用混沌優(yōu)化的思想產(chǎn)生初始粒子、設(shè)定早熟判別機(jī)制來(lái)判斷是否陷入局部最優(yōu)解,并通過(guò)粒子變異的策略使其跳出局部最優(yōu)解等方法進(jìn)一步優(yōu)化基本粒子群算法。通過(guò)常用的測(cè)試函數(shù)對(duì)該算法進(jìn)行了測(cè)試,測(cè)試結(jié)果表明:相比于基本粒子群算法,該算法具有收斂速度快、尋優(yōu)精度高、應(yīng)用范圍廣等優(yōu)點(diǎn)。利用系統(tǒng)仿真的方法模擬彈丸的自由飛行數(shù)據(jù),并利用該數(shù)據(jù)結(jié)合所提算法對(duì)彈丸的主要?dú)鈩?dòng)參數(shù)進(jìn)行辨識(shí),辨識(shí)結(jié)果表明:該算法可以有效辨識(shí)彈丸的氣動(dòng)參數(shù),且精度高,收斂速度快,可以應(yīng)用于工程實(shí)際問(wèn)題。
[Abstract]:The maximum likelihood criterion is applied to the aerodynamic parameter identification of high speed rotating projectile. A new adaptive chaotic mutation particle swarm optimization algorithm is proposed to solve the optimal solution of aerodynamic parameters under the criterion, and then the aerodynamic parameters of the projectile are obtained. The algorithm adaptively adjusts inertial weight, generates initial particles by using the idea of chaos optimization, and sets up a precocious discriminant mechanism to determine whether or not it falls into a local optimal solution. The basic particle swarm optimization algorithm is further optimized by the strategy of particle mutation which makes it jump out of the local optimal solution and so on. The test results show that compared with the basic particle swarm optimization algorithm, the algorithm has the advantages of fast convergence, high precision and wide application. The system simulation method is used to simulate the free-flight data of the projectile, and the main aerodynamic parameters of the projectile are identified by using the data and the proposed algorithm. The identification results show that the algorithm can effectively identify the aerodynamic parameters of the projectile, and the accuracy of the algorithm is high. The convergence rate is fast and can be applied to practical engineering problems.
【作者單位】: 南京理工大學(xué)瞬態(tài)物理國(guó)家重點(diǎn)實(shí)驗(yàn)室;海軍駐沈陽(yáng)彈藥專業(yè)軍事總代表室;南京理工大學(xué)能源與動(dòng)力工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(11472136;11402117)
【分類號(hào)】:TJ410;TP18
本文編號(hào):2314662
[Abstract]:The maximum likelihood criterion is applied to the aerodynamic parameter identification of high speed rotating projectile. A new adaptive chaotic mutation particle swarm optimization algorithm is proposed to solve the optimal solution of aerodynamic parameters under the criterion, and then the aerodynamic parameters of the projectile are obtained. The algorithm adaptively adjusts inertial weight, generates initial particles by using the idea of chaos optimization, and sets up a precocious discriminant mechanism to determine whether or not it falls into a local optimal solution. The basic particle swarm optimization algorithm is further optimized by the strategy of particle mutation which makes it jump out of the local optimal solution and so on. The test results show that compared with the basic particle swarm optimization algorithm, the algorithm has the advantages of fast convergence, high precision and wide application. The system simulation method is used to simulate the free-flight data of the projectile, and the main aerodynamic parameters of the projectile are identified by using the data and the proposed algorithm. The identification results show that the algorithm can effectively identify the aerodynamic parameters of the projectile, and the accuracy of the algorithm is high. The convergence rate is fast and can be applied to practical engineering problems.
【作者單位】: 南京理工大學(xué)瞬態(tài)物理國(guó)家重點(diǎn)實(shí)驗(yàn)室;海軍駐沈陽(yáng)彈藥專業(yè)軍事總代表室;南京理工大學(xué)能源與動(dòng)力工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(11472136;11402117)
【分類號(hào)】:TJ410;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王貴東;崔爾杰;劉子強(qiáng);;閉環(huán)氣動(dòng)參數(shù)辨識(shí)的兩步方法[J];飛行力學(xué);2010年02期
,本文編號(hào):2314662
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2314662.html
最近更新
教材專著