面向輪胎制造企業(yè)的能耗優(yōu)化方法研究
[Abstract]:With the rising of energy price and the increasing of environmental problems, the development of traditional manufacturing industry is restricted by energy cost and environmental problems. Tire manufacturing industry is a high energy consumption and high pollution enterprise. It is one of the effective means to reduce the energy consumption cost by reducing the energy consumption in the production process. As an important part of production management, production scheduling is the potential direction for enterprises to achieve energy saving and emission reduction. Aiming at the problem that the energy consumption factor is not considered in the machine scheduling optimization strategy of tire mill workshop, the energy consumption optimization model based on the influence factor is established. The total completion time and energy consumption cost are taken as the constituent elements in the model. The comprehensive cost of these two elements is taken as the goal to solve the problem. At the same time, the influence factor is added to indicate the degree of attention to the cost of time and energy consumption in production. For the established energy consumption optimization model, an improved adaptive genetic algorithm (Another Adaptive Genetic Algorithm, AAGA) is designed to solve the scheduling optimization problem. The AAGA algorithm is based on the analysis of the causes of precocity. A method for evaluating the degree of individual difference in each generation is proposed, and then the upper and lower limits of crossover and variation probability of each generation are dynamically adjusted according to the evaluation index during the evolution of the population. At the same time, the crossover and mutation probability of each generation is adaptively adjusted according to individual adaptability. Based on the above crossover and mutation strategies, the flow shop data set provided by Tillard is used to experiment. The experimental results show that the AAGA algorithm can find a better solution. Finally, the energy consumption optimization problem is solved by using the proposed algorithm based on the actual production data. The comparison data show that the application effect of AAGA, SGA (Simple Genetic Algorithm,SGA) and AGA (Adaptive Genetic Algorithm,AGA) has some advantages. Furthermore, the AAGA algorithm is used to verify the energy consumption optimization model based on the influence factor, which shows that the energy consumption optimization model established in this paper can achieve different energy saving effects.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ330.8;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李小霞;黃小毛;劉建曉;劉峰;;面向低制造能耗的車間作業(yè)調(diào)度優(yōu)化仿真[J];系統(tǒng)仿真學(xué)報(bào);2016年01期
2 楊殿才;郭輝;寧維巍;朱可輝;;輪胎行業(yè)密煉用電削峰填谷研究[J];橡塑技術(shù)與裝備;2014年09期
3 楊力;劉程程;宋利;盛武;;基于熵權(quán)法的煤礦應(yīng)急救援能力評價(jià)[J];中國軟科學(xué);2013年11期
4 劉獻(xiàn)禮;陳濤;;機(jī)械制造中的低碳制造理論與技術(shù)[J];哈爾濱理工大學(xué)學(xué)報(bào);2011年01期
5 曹華軍;陶緒財(cái);劉飛;;基于批量分割及交貨期約束的機(jī)床節(jié)能型優(yōu)化調(diào)度方法及應(yīng)用[J];機(jī)械科學(xué)與技術(shù);2010年06期
6 陳峰;楊殿才;朱可輝;王海清;;基于MES的輪胎成型和硫化生產(chǎn)調(diào)度系統(tǒng)[J];計(jì)算機(jī)與應(yīng)用化學(xué);2010年01期
7 芮執(zhí)元;馮亞崗;劉軍;劉美萍;;JIT柔性混合流水車間生產(chǎn)調(diào)度問題研究[J];機(jī)械與電子;2009年10期
8 歐微;鄒逢興;高政;徐曉紅;;基于多目標(biāo)粒子群算法的混合流水車間調(diào)度方法研究[J];計(jì)算機(jī)工程與科學(xué);2009年08期
9 常建娥;何燕;;一種基于遺傳算法求解車間調(diào)度問題的優(yōu)化方法[J];物流科技;2006年02期
10 任子武;傘冶;;自適應(yīng)遺傳算法的改進(jìn)及在系統(tǒng)辨識(shí)中應(yīng)用研究[J];系統(tǒng)仿真學(xué)報(bào);2006年01期
相關(guān)碩士學(xué)位論文 前8條
1 李冰;考慮調(diào)整時(shí)間的柔性流水車間能耗優(yōu)化調(diào)度模型研究及應(yīng)用[D];廣東工業(yè)大學(xué);2015年
2 張志鵬;基于多目標(biāo)遺傳粒子群混合算法求解混合流水車間調(diào)度問題研究[D];大連交通大學(xué);2014年
3 唐萬和;輪胎硫化車間能耗優(yōu)化調(diào)度問題研究[D];廣東工業(yè)大學(xué);2014年
4 鄭慶仁;低碳調(diào)度模型研究及其在輪胎制造過程中的應(yīng)用[D];華南理工大學(xué);2012年
5 楊淑愛;制造過程中的低碳優(yōu)化模型研究及應(yīng)用[D];華南理工大學(xué);2012年
6 王偉;面向能耗優(yōu)化的車間調(diào)度方法研究及其應(yīng)用環(huán)境開發(fā)[D];哈爾濱工業(yè)大學(xué);2011年
7 陳莉莉;多目標(biāo)粒子群算法及其在車間調(diào)度中的應(yīng)用研究[D];浙江工業(yè)大學(xué);2011年
8 王萬雷;基于遺傳算法的車間作業(yè)調(diào)度問題研究[D];昆明理工大學(xué);2002年
,本文編號(hào):2303523
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2303523.html