球形兩棲機器人的穩(wěn)定性分析
[Abstract]:With the rapid development of modern society, the relationship between robot technology and human daily life becomes more and more inseparable. Spherical amphibious robot is an important part of robot. Because it is a symmetrical structure, it has good environmental adaptability and motion stability, and has been widely used in every field of daily life. Therefore, the research of spherical amphibious robot has become a hot topic in the field of robot research. It is necessary to study and analyze the stability of spherical amphibious robot because of its stable structure and performance. Firstly, this paper introduces a new spherical amphibious robot system. The robot is an integral symmetric spherical structure with stable structure, low noise and flexible movement. It uses a water spray pipe with a water jet DC propeller as its driving leg unit. The robot can not only operate on land, but also accomplish all kinds of motion and operation in underwater environment. Secondly, in order to analyze the land stability and underwater stability of spherical amphibious robot, the stability theory of spherical amphibious robot is analyzed. Then the motion of spherical amphibious robot in terrestrial environment is simulated and analyzed by using the theory of fluid-solid coupling mechanics, and the global deformation diagram, elastic strain distribution and equivalent stress distribution of spherical amphibious robot are obtained. The land motion stability of spherical amphibious robot is analyzed. The contact pressure between the copper column and the horizontal steering gear of the spherical amphibious robot is the largest, which is much smaller than the yield strength of the material for 5 Pa, and meets the requirements of stability. Finally, the land stability experiments of spherical amphibious robot are carried out, and the stability of spherical amphibious robot at different stride frequency and stride is verified, and the optimal swing angle of spherical amphibious robot is 30 擄when it is running on land. The optimal oscillation period is 0.2 s. Finally, the hydrodynamic analysis theory is briefly introduced, the simplified model of spherical amphibious robot is drawn, and the hydrodynamic analysis of water jet propeller is carried out. The spherical amphibious robot and its surrounding waters are meshed, and the corresponding constraints are imposed. The pressure cloud map and velocity vector diagram of the spherical amphibious robot under water are obtained by using ANSYS software, and the simulation results are analyzed. The stability of spherical amphibious robot is verified. When the spherical amphibious robot moves upward under water, the force on the top of the spherical shell is the largest, reaching 16 Ns, which is far less than the structural strength of the Yake-force material and meets the requirements of stability. Then the underwater stability experiment of spherical amphibious robot is carried out, and the experimental results are analyzed. When the input voltage of the spherical amphibious robot is 6V, the yawp angle of the spherical amphibious robot is minimum, about 10 擄. For the most stable state of motion. The stability experiment of spherical amphibious robot along the straight line is also carried out. When the spherical amphibious robot moves under water, the maximum displacement deviation is less than 0.1 m, which indicates that the spherical amphibious robot has the stability along the straight line. Finally, the trajectory tracking experiment of spherical amphibious robot is carried out to verify the tracking ability of spherical amphibious robot.
【學位授予單位】:天津理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP242
【相似文獻】
相關(guān)期刊論文 前10條
1 庾晉,白木;神奇的機器人世界[J];機電產(chǎn)品開發(fā)與創(chuàng)新;2001年03期
2 ;2001恩格爾伯格機器人獎頒布[J];機器人技術(shù)與應用;2001年05期
3 ;神奇的機器人世界[J];機電新產(chǎn)品導報;2001年Z5期
4 宋樹藩;采用機器人的有效自動化[J];世界制造技術(shù)與裝備市場;2001年06期
5 ;創(chuàng)造出色的機器人[J];個人電腦;2003年04期
6 ;危險作業(yè)機器人——人類的好幫手——訪國家863機器人技術(shù)主題專家組專家戴先中教授[J];機器人技術(shù)與應用;2003年03期
7 小才;;機器人時代[J];電腦愛好者;2006年13期
8 宋海宏;;機器人技術(shù)展望[J];山西煤炭管理干部學院學報;2006年04期
9 董煬斌;蔣靜坪;何衍;;一種基于雙令牌的多機器人協(xié)作策略研究[J];計算機工程;2007年12期
10 王國奎;劉彥波;;草方格鋪設(shè)機器人綜合、高效控制系統(tǒng)的設(shè)計[J];科技咨詢導報;2007年20期
相關(guān)會議論文 前10條
1 楊朝虹;張海珠;;機器人技術(shù)的應用與發(fā)展[A];先進制造技術(shù)論壇暨第五屆制造業(yè)自動化與信息化技術(shù)交流會論文集[C];2006年
2 王明輝;王楠;李斌;;面向災難救援的機器人控制站系統(tǒng)設(shè)計[A];中國儀器儀表學會第十二屆青年學術(shù)會議論文集[C];2010年
3 郭戈;王燕;王偉;;一種多機器人協(xié)作方法[A];第二十屆中國控制會議論文集(下)[C];2001年
4 崔世鋼;邴志剛;彭商賢;王玉東;;基于遠程腦概念的服務機器人開發(fā)平臺的設(shè)計與研究[A];先進制造技術(shù)論壇暨第二屆制造業(yè)自動化與信息化技術(shù)交流會論文集[C];2003年
5 楊瑩;丁X;許侃;;國際機器人科學知識前沿演化的可視化分析[A];科學學理論與科學計量學探索——全國科學技術(shù)學暨科學學理論與學科建設(shè)2008年聯(lián)合年會論文集[C];2008年
6 唐矯燕;趙群飛;黃杰;楊汝清;;基于兩足步行椅機器人的人在環(huán)中的助殘機器人控制系統(tǒng)[A];第二十六屆中國控制會議論文集[C];2007年
7 薛頌東;曾建潮;杜靜;;具運動學特性約束的群機器人目標搜索[A];2009中國控制與決策會議論文集(2)[C];2009年
8 張國偉;李斌;龔海里;王聰;鄭懷兵;;廢墟洞穴搜救機器人控制軟件設(shè)計與實現(xiàn)[A];中國儀器儀表學會第十二屆青年學術(shù)會議論文集[C];2010年
9 崔世鋼;方景林;劉嘉q;彭商賢;邴志剛;;服務機器人開發(fā)中測控問題的研究[A];中國儀器儀表學會第五屆青年學術(shù)會議論文集[C];2003年
10 吳國盛;李云霞;李驪;;一種基于極坐標系下的機器人動態(tài)避碰算法[A];2006中國控制與決策學術(shù)年會論文集[C];2006年
相關(guān)重要報紙文章 前10條
1 冬冬;看看自動化機器人在包裝業(yè)中能起多大作用[N];中國包裝報;2005年
2 莽九晨 周之然;有感“機器人道德法”[N];人民日報;2007年
3 記者 陳琳;機器人總動員[N];第一財經(jīng)日報;2010年
4 記者 孫亞斐;千余支隊伍攜機器人亮相金城[N];蘭州日報;2011年
5 崔鑫;機器人也能和您一起下廚[N];北京科技報;2012年
6 特約記者 楊保國;中國科大“藍鷹”稱雄機器人世界杯[N];大眾科技報;2007年
7 本報記者 陳淑娟;機器人走近生活[N];計算機世界;2006年
8 虎虎;科學好玩(三)[N];四川科技報;2007年
9 孫潛彤;新松公司:在機器人研發(fā)領(lǐng)域顯身手[N];經(jīng)濟日報;2008年
10 財宣邋Q孟推,
本文編號:2302948
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2302948.html