遺傳模擬退火算法——黑龍江TSP問(wèn)題
發(fā)布時(shí)間:2018-10-29 11:48
【摘要】:以黑龍江省29個(gè)城市構(gòu)造TSP問(wèn)題,通過(guò)對(duì)實(shí)驗(yàn)數(shù)據(jù)的分析,得出了遺傳模擬退火算法在求解精度上優(yōu)于遺傳算法或模擬退火算法。遺傳模擬退火算法利用了模擬退火算法局部精確的求解能力補(bǔ)充了遺傳算法在局部求解不夠精確的弊端,從而加快了求解TSP問(wèn)題的效率,同時(shí),又將蟻群算法和遺傳模擬退火算法做比較,從結(jié)果可以看出遺傳模擬退火算法求解效果較好。
[Abstract]:The TSP problem is constructed in 29 cities of Heilongjiang Province. Through the analysis of the experimental data, it is concluded that the genetic simulated annealing algorithm is superior to the genetic algorithm or simulated annealing algorithm in solving the problem. Genetic simulated annealing algorithm makes use of the local accurate solving ability of simulated annealing algorithm to supplement the disadvantage of genetic algorithm which is not accurate in local solution, thus speeding up the efficiency of solving TSP problem, at the same time, By comparing ant colony algorithm with genetic simulated annealing algorithm, it can be seen that genetic simulated annealing algorithm is effective.
【作者單位】: 黑龍江科技大學(xué)理學(xué)院;
【分類號(hào)】:O1-0
本文編號(hào):2297601
[Abstract]:The TSP problem is constructed in 29 cities of Heilongjiang Province. Through the analysis of the experimental data, it is concluded that the genetic simulated annealing algorithm is superior to the genetic algorithm or simulated annealing algorithm in solving the problem. Genetic simulated annealing algorithm makes use of the local accurate solving ability of simulated annealing algorithm to supplement the disadvantage of genetic algorithm which is not accurate in local solution, thus speeding up the efficiency of solving TSP problem, at the same time, By comparing ant colony algorithm with genetic simulated annealing algorithm, it can be seen that genetic simulated annealing algorithm is effective.
【作者單位】: 黑龍江科技大學(xué)理學(xué)院;
【分類號(hào)】:O1-0
【相似文獻(xiàn)】
相關(guān)會(huì)議論文 前1條
1 鐘一文;蔡榮英;;求解TSP問(wèn)題的貪婪隨機(jī)模擬退火算法[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第一分冊(cè))[C];2009年
相關(guān)碩士學(xué)位論文 前7條
1 鐘成皓;改進(jìn)的混合遺傳模擬退火算法及其在TSP問(wèn)題中的應(yīng)用研究[D];吉林大學(xué);2007年
2 廖興新;螞蟻算法在TSP問(wèn)題中的應(yīng)用與研究[D];四川大學(xué);2006年
3 袁杰;基于蟻群遺傳混合智能算法求解TSP問(wèn)題[D];長(zhǎng)春工業(yè)大學(xué);2014年
4 孫駿;基于蟻群優(yōu)化算法的TSP問(wèn)題研究[D];武漢理工大學(xué);2005年
5 歐陽(yáng)陳華;求解TSP問(wèn)題的化學(xué)反應(yīng)優(yōu)化算法研究[D];湖南大學(xué);2014年
6 向曉明;基于分布式蟻群算法的TSP問(wèn)題研究[D];西南交通大學(xué);2009年
7 楊金輝;用Memetic算法求解TSP問(wèn)題[D];吉林大學(xué);2005年
,本文編號(hào):2297601
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2297601.html
最近更新
教材專著