基于FNN的隨機(jī)非線性系統(tǒng)控制器設(shè)計與分析
[Abstract]:Practical engineering systems are often nonlinear systems, and there are inevitably various uncertainties and external random disturbances in the systems. These uncertainties and random disturbances will affect the stability and performance of the system. Therefore, it is of great theoretical significance to study the control problem of stochastic nonlinear systems. In engineering practice, how to overcome the influence of uncertainty and random disturbance on the stability of flight control system and ensure flight safety is a subject of practical application value. Therefore, the stabilization controller of stochastic nonlinear uncertain systems is analyzed and designed in this paper, and the theoretical research results are applied to the stability control of flight systems. The main research contents are as follows: firstly, the development of stochastic nonlinear system control problems at home and abroad is introduced and summarized, and the current research hotspots and problems to be solved are analyzed. Combining Backstepping technology with fuzzy neural network method, the output weight can be adjusted adaptively by constructing a four-layer fuzzy neural network. Thus, an adaptive controller is designed, which makes the state of a class of pure feedback stochastic nonlinear uncertain systems bounded by probability. The design method effectively reduces the number of adjustable parameters. The dynamic surface control method is introduced to avoid the parameter expansion through the application of the first-order low-pass filter. The structure of the controller is simplified, the computation is reduced, and an adaptive controller is designed to make the closed-loop system semi-global uniform and ultimately bounded. The filtering time is reduced to accelerate the state convergence of the system and the filtering error is reduced. The obtained theoretical results are applied to the longitudinal model control of high speed vehicles with random disturbances, and an adaptive fuzzy neural network dynamic surface controller is designed. In order to ensure that the closed-loop system signal is semi-global uniform and ultimately bounded, the simulation results verify the effectiveness of the method. Finally, the paper is summarized and prospected.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王建敏;董小萌;吳云潔;;高超聲速飛行器RBF神經(jīng)網(wǎng)絡(luò)滑模變結(jié)構(gòu)控制[J];電機(jī)與控制學(xué)報;2016年05期
2 李硯濃;李汀蘭;姜藝;范家璐;;基于RBF神經(jīng)網(wǎng)絡(luò)自適應(yīng)PID四旋翼飛行器控制[J];控制工程;2016年03期
3 王永超;張勝修;曹立佳;扈曉翔;;輸入受限的非線性系統(tǒng)自適應(yīng)模糊backstepping控制[J];控制理論與應(yīng)用;2015年12期
4 郁嘉;楊鵬飛;嚴(yán)德;;高超聲速飛行器模型不確定性影響分析[J];航空學(xué)報;2015年01期
5 劉勇華;;一類純反饋非線性系統(tǒng)的動態(tài)面控制[J];控制理論與應(yīng)用;2014年09期
6 鄧濤;姚宏;杜軍;姜久龍;張卓航;;一類不確定高階隨機(jī)非線性系統(tǒng)的自適應(yīng)動態(tài)面控制[J];信息與控制;2014年04期
7 羅云林;尹楚雄;;基于模糊徑向基神經(jīng)網(wǎng)絡(luò)的小型無人機(jī)控制系統(tǒng)研究[J];中國民航飛行學(xué)院學(xué)報;2014年01期
8 張強(qiáng);吳慶憲;姜長生;王玉惠;;基于Backstepping的非仿射非線性系統(tǒng)魯棒控制[J];控制與決策;2014年01期
9 胡超芳;劉艷雯;;基于動態(tài)面的高超聲速飛行器模糊自適應(yīng)非線性控制[J];控制與決策;2013年12期
10 孫長銀;穆朝絮;余瑤;;近空間高超聲速飛行器控制的幾個科學(xué)問題研究[J];自動化學(xué)報;2013年11期
相關(guān)碩士學(xué)位論文 前1條
1 高華亭;帶有未建模動態(tài)的隨機(jī)非線性系統(tǒng)的自適應(yīng)控制研究[D];揚州大學(xué);2014年
,本文編號:2294388
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2294388.html