基于TS模糊推理的粒子群算法
[Abstract]:Particle swarm optimization (Particle Swarm Optimization PSO) is a new swarm intelligence optimization algorithm, which has the characteristics of distributed, cooperative, self-organizing and simple implementation. This makes it possible for the algorithm to deal with all kinds of complex problems quickly when the global information is lacking, and also opens up a new way for solving typical complex problems. However, the algorithm is still likely to fall into local optimum when dealing with high dimensional complex problems. How to enhance the global search ability by ensuring the balance between Exploration and Exploitation is a hot and difficult point in this field. The PSO algorithm is improved from two aspects. One is the quantum behavior particle swarm optimization algorithm based on Sun Jun et al. (Quantum-behaved Particle Swarm Optimization QPSO),) an adaptive quantum behavior particle swarm optimization algorithm based on Takagi-Sugeno (TS) fuzzy reasoning (Adaptive Quantum-behaved Particle Swarm Optimization AQPSO),) is proposed. Particle swarm optimization algorithm is improved. Using the information of population distribution and exploration process, the algorithm dynamically adjusts the parameters of the algorithm and its iterative method by TS fuzzy reasoning, so as to ensure the population exploration in a larger space and reduce the probability of falling into local optimum. Secondly, based on the attractive and repulsive PSO (ARPSO) algorithm proposed by Riget et al., this paper proposes a dynamic algorithm to adjust the inertia weight, (Dynamic attractive and repulsive PSO DARPSO), which is not a simple linear decrement strategy. Instead, the inertia weight is adjusted dynamically according to whether the particle is contracted or expanded, and a new updating method of particle position is designed according to TS fuzzy reasoning. The simulation results of several standard test functions and the (Wilcoxon) sign rank test show that the AQPSO algorithm is effective in dealing with multiple local optimal solutions with small differences. The DARPSO algorithm is effective in solving the problem where the global optimal solution is different from the local optimal solution. At the same time, the AQPSO algorithm, DARPSO algorithm proposed in this paper have better performance than QPSO algorithm, ARPSO algorithm and PSO algorithm in dealing with the optimization problem of complex high-dimensional function.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 高圣國;劉升;鄭中團(tuán);;帶兩類正態(tài)變異的PSO算法[J];控制與決策;2014年10期
2 王洪峰;王娜;汪定偉;黃敏;;一種求解多峰優(yōu)化問題的改進(jìn)Species粒子群算法[J];系統(tǒng)工程學(xué)報(bào);2012年06期
3 劉軍民;高岳林;;混沌粒子群優(yōu)化算法[J];計(jì)算機(jī)應(yīng)用;2008年02期
4 李洪興;彭家寅;王加銀;侯健;張宇卓;;基于三Ⅰ算法的模糊系統(tǒng)及其響應(yīng)性能[J];系統(tǒng)科學(xué)與數(shù)學(xué);2006年05期
5 李洪興,彭家寅,王加銀;常見模糊蘊(yùn)涵算子的模糊系統(tǒng)及其響應(yīng)函數(shù)[J];控制理論與應(yīng)用;2005年03期
6 侯健,尤飛,李洪興;由三I算法構(gòu)造的一些模糊控制器及其響應(yīng)能力[J];自然科學(xué)進(jìn)展;2005年01期
7 苗東升;系統(tǒng)科學(xué)的難題與突破點(diǎn)[J];科技導(dǎo)報(bào);2000年07期
8 王國俊;模糊推理的全蘊(yùn)涵三I算法[J];中國科學(xué)E輯:技術(shù)科學(xué);1999年01期
9 李洪興;模糊控制的插值機(jī)理[J];中國科學(xué)E輯:技術(shù)科學(xué);1998年03期
相關(guān)博士學(xué)位論文 前1條
1 孫俊;量子行為粒子群優(yōu)化算法研究[D];江南大學(xué);2009年
,本文編號(hào):2292953
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2292953.html