面向地理課程自動(dòng)解題的試題理解技術(shù)研究
[Abstract]:As one of the research hotspots in the field of artificial intelligence and natural language processing, automatic problem solving is the use of computer to solve the test questions of related courses automatically. The technique of question comprehension is to make the computer understand the meaning of text automatically. By analyzing the lexical, syntactic and semantic meaning of the text, the computer can solve the problem automatically. At present, the research on automatic problem solving is mainly aimed at mathematics courses, but less on other courses. Although geography course is a liberal arts subject, it contains rich knowledge points. "knowing astronomy on top, knowing geography below" also explains the importance of geography course. The research contents are as follows: (1) this paper classifies the geography course test questions, applies the SVM algorithm to the geography examination questions classification field, uses the Linear kernel function in the LIBSVM classification package to study and train the text of the test questions, and extracts the key words from the TFIDF. The feature vector is generated and the classification model is constructed for testing. The experimental results on the collected set of geography test questions show that the classification accuracy of Linear kernel function is better than 80%, and the text classification algorithm is applied in the field of geography course. (2) this paper solves the problem automatically for geography course. Based on the construction of geographical entity ontology, the semantic relations between conceptual entities are further obtained by semantic analysis of questions and options, and the semantic relations are transformed into problem solving rules for test questions. The experimental results on the collection of geographical test questions show that the rules obtained in this paper can obviously improve the solution of the text test questions, and also have some auxiliary effect on the solution of the chart type test questions.
【學(xué)位授予單位】:安徽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.1;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王元卓;賈巖濤;劉大偉;靳小龍;程學(xué)旗;;基于開(kāi)放網(wǎng)絡(luò)知識(shí)的信息檢索與數(shù)據(jù)挖掘[J];計(jì)算機(jī)研究與發(fā)展;2015年02期
2 趙丹;;SVM核函數(shù)與選擇算法[J];數(shù)字技術(shù)與應(yīng)用;2014年09期
3 汪海燕;黎建輝;楊風(fēng)雷;;支持向量機(jī)理論及算法研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2014年05期
4 馬森;趙文;袁崇義;張世琨;王立福;;基于規(guī)則推理的語(yǔ)義檢索若干關(guān)鍵技術(shù)研究[J];電子學(xué)報(bào);2013年05期
5 崔建明;劉建明;廖周宇;;基于SVM算法的文本分類技術(shù)研究[J];計(jì)算機(jī)仿真;2013年02期
6 歐石燕;;面向關(guān)聯(lián)數(shù)據(jù)的語(yǔ)義數(shù)字圖書館資源描述與組織框架設(shè)計(jì)與實(shí)現(xiàn)[J];中國(guó)圖書館學(xué)報(bào);2012年06期
7 徐雷;;SPARQL查詢優(yōu)化[J];現(xiàn)代圖書情報(bào)技術(shù);2012年10期
8 陳歡歡;;圖書情報(bào)學(xué)領(lǐng)域本體的構(gòu)建研究[J];圖書館學(xué)研究;2011年21期
9 蔡艷婧;程顯毅;潘燕;;面向自然語(yǔ)言處理的人工智能框架[J];微電子學(xué)與計(jì)算機(jī);2011年10期
10 張文秀;朱慶華;;領(lǐng)域本體的構(gòu)建方法研究[J];圖書與情報(bào);2011年01期
相關(guān)碩士學(xué)位論文 前6條
1 熊逵;基于SPAROL的語(yǔ)義網(wǎng)數(shù)據(jù)查詢系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];浙江大學(xué);2015年
2 曹蓓;基于本體的文胸產(chǎn)品知識(shí)模型構(gòu)建研究[D];西安工程大學(xué);2013年
3 高超;中文問(wèn)題分類中特征選擇研究[D];安徽工業(yè)大學(xué);2011年
4 王記偉;基于規(guī)則推理的應(yīng)急事件自動(dòng)處理技術(shù)研究[D];東華大學(xué);2009年
5 聶旭飛;基于本體和規(guī)則的推理在物流中的應(yīng)用研究[D];天津大學(xué);2007年
6 艾偉;本體的構(gòu)造及其應(yīng)用研究[D];武漢理工大學(xué);2005年
,本文編號(hào):2290438
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2290438.html