基于BP神經(jīng)網(wǎng)絡(luò)的城鎮(zhèn)污水廠活性炭自動(dòng)投加系統(tǒng)的研究
[Abstract]:In recent years, with the advantages of good adsorption effect and low cost, powdered activated carbon is no longer limited to the emergency treatment of sudden pollution, and is gradually developing into the mainstream technology of advanced treatment. However, the powdered activated carbon feeding system is still in the manual control stage. It is necessary for technicians to determine the dosage of activated carbon based on experience, which leads to unstable effluent quality and large consumption of activated carbon. Therefore, how to automatically adjust the dosage of activated carbon according to the influent water quality is an urgent problem to be solved in the popularization and application of the powder activated carbon dosing system. It is of great significance for the small and medium-sized town wastewater treatment plants to achieve stable standards and save energy and consumption. In this paper, the advanced treatment process of a town sewage treatment plant in Jiashan County, Zhejiang Province is taken as the research background, and the powder activated carbon dosing system is taken as the research object. The main factors affecting the dosage of activated carbon are COD,pH and flow rate of raw water. Aiming at the problems of large lag, nonlinearity and complexity of active carbon feeding control system, a novel feedforward predictive dosing controller based on BP neural network is proposed, and a compound control system scheme based on BP neural network feedforward predictive and PID feedback is established. The main results are as follows: 1. 46 groups of successful sample data were obtained by beaker test. BP neural network and multivariate linear regression were used to construct feedforward control model of activated carbon feeding system. BP neural network adopted three-layer structure. There are 2 nodes in the input layer, 1 node in the output layer and 11 nodes in the hidden layer. Using the model after off-line training, the unlearned samples are simulated, and the fitting degree R2C 0.368 and the root mean square error (RMSE=0.0091.) are obtained. The expression of multivariate linear regression model is U=0.0170X1 0.0020X2-0.2078. According to the same method, the fitting degree R _ 2o _ (0.909) and root mean square error (RMSE=0.0145.) are obtained. Compared with the simulation results, the feedforward controller of the active carbon feeding system has obvious advantages by using the BP neural network model, which not only has high prediction accuracy, but also has a strong learning ability. It can adapt to the change of different water quality. 2. The expression of transfer function is obtained by theoretical analysis of the model of controlled object. The inflection point of the step response curve (50 ~ 49.78) was obtained by using the experiment of adding powder activated carbon. The transfer function of the controlled object was determined as G0 (s) = 5.4 / (1.33.75s) (116.875s) e-26.6s. The critical proportion method is used to determine the parameters of PID controller, which are: Kp=0.36;KI=0.006;KD=5.4. The step response curve shows that the output COD overshoot of the system under feedback control is greater than 40 and the time required to achieve stability is about 300 min. The feedforward BP neural network predictive control system and PID feedback compound control system are simulated under the Simulink environment of Matlab. The results show that the overshoot of effluent COD is less than 20 and the adjusting time is about 70 min. In the demonstration project, the upper computer uses PC, with WinCC 7.0 to transmit data to each PLC station through Ethernet. The communication between PC Matlab and PLC is accomplished by OPC communication tool. The flow rate of activated carbon dosing metering pump Q is automatically calculated according to the formula q=x/10 蠅. After one month's trial operation under automatic control mode, the effluent COD reaches the standard rate of 90.63%, which is 8.88% higher than that of manual control. At the same time, the average daily consumption of activated carbon is reduced by 16.61%, and the cost of using activated carbon is reduced by 135000 yuan per month.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP183;TU992.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔彥平,傅其鳳,師偉力;BP算法在旋轉(zhuǎn)機(jī)械故障診斷中的應(yīng)用[J];河北科技大學(xué)學(xué)報(bào);2003年03期
2 孫金穎;武涌;劉長(zhǎng)濱;;基于BP神經(jīng)網(wǎng)絡(luò)的既有居住建筑節(jié)能改造模式選擇[J];暖通空調(diào);2007年09期
3 唐文;焦中生;饒若愚;鄧亮;;基于改進(jìn)的BP算法雷達(dá)故障診斷系統(tǒng)設(shè)計(jì)[J];火力與指揮控制;2008年S1期
4 王紅芳;康慕寧;鄧正宏;;BP神經(jīng)網(wǎng)絡(luò)在大氣環(huán)境質(zhì)量評(píng)價(jià)中的應(yīng)用研究[J];科學(xué)技術(shù)與工程;2009年07期
5 邵先勝;沈正偉;李之波;;基于BP神經(jīng)網(wǎng)絡(luò)的瀝青路面使用性能評(píng)價(jià)模型[J];河南科技;2011年06期
6 羅廣恩;崔維成;;金屬疲勞裂紋擴(kuò)展速率的貝葉斯正則化BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)[J];船舶力學(xué);2012年04期
7 郭紅濤;;基于BP算法的電力系統(tǒng)負(fù)荷預(yù)測(cè)[J];科技信息;2013年04期
8 唐巍,陳學(xué)允;并行BP網(wǎng)在電力系統(tǒng)暫態(tài)穩(wěn)定分析中的應(yīng)用[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);1997年04期
9 ;韓國(guó)BP機(jī)普及率世界第一[J];農(nóng)電管理;1997年05期
10 潘力強(qiáng),馬歆,楊長(zhǎng)青;廣義BP網(wǎng)用于電力系統(tǒng)短期負(fù)荷預(yù)報(bào)[J];湖南電力;1998年03期
相關(guān)會(huì)議論文 前10條
1 吳炎;杜棟;;基于BP神經(jīng)網(wǎng)絡(luò)的江蘇省農(nóng)業(yè)可持續(xù)發(fā)展能力評(píng)價(jià)[A];決策科學(xué)與評(píng)價(jià)——中國(guó)系統(tǒng)工程學(xué)會(huì)決策科學(xué)專(zhuān)業(yè)委員會(huì)第八屆學(xué)術(shù)年會(huì)論文集[C];2009年
2 栗秋華;李楊;盧雯嘉;游步新;;基于遺傳算法和BP神經(jīng)網(wǎng)絡(luò)的電力系統(tǒng)電壓穩(wěn)定性預(yù)警模型[A];重慶市電機(jī)工程學(xué)會(huì)2010年學(xué)術(shù)會(huì)議論文集[C];2010年
3 戴立新;胡潔;李美葉;;基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)戶(hù)小額信用貸款風(fēng)險(xiǎn)評(píng)價(jià)研究[A];2007北京地區(qū)高校研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)會(huì)議論文集(上冊(cè))[C];2008年
4 戴立新;胡潔;李美葉;;基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)戶(hù)小額信用貸款風(fēng)險(xiǎn)評(píng)價(jià)研究[A];中國(guó)會(huì)計(jì)學(xué)會(huì)高等工科院校分會(huì)2007年學(xué)術(shù)年會(huì)暨第十四屆年會(huì)論文集[C];2007年
5 賈燕;陳思嘉;沈京玲;;基于BP神經(jīng)網(wǎng)絡(luò)的毒品太赫茲光譜識(shí)別[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
6 劉志飛;;基于BP神經(jīng)網(wǎng)絡(luò)的助學(xué)信貸評(píng)估模型[A];信息經(jīng)濟(jì)學(xué)與電子商務(wù):第十三屆中國(guó)信息經(jīng)濟(jì)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2008年
7 宋宜斌;王培進(jìn);李凱里;;多層前饋神經(jīng)網(wǎng)絡(luò)中BP算法的改進(jìn)及其應(yīng)用研究[A];2001年中國(guó)智能自動(dòng)化會(huì)議論文集(上冊(cè))[C];2001年
8 簡(jiǎn)季;楊武年;馬正龍;陳園園;;BP神經(jīng)網(wǎng)絡(luò)在土地分類(lèi)中的應(yīng)用研究——以汶川地區(qū)為例[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
9 尤煥苓;丁德平;王春華;劉偉東;謝莊;;應(yīng)用回歸分析和BP神經(jīng)網(wǎng)絡(luò)方法模擬北京地區(qū)電力負(fù)荷[A];第26屆中國(guó)氣象學(xué)會(huì)年會(huì)預(yù)測(cè)與公共服務(wù)分會(huì)場(chǎng)論文集[C];2009年
10 唐鳳英;喻長(zhǎng)遠(yuǎn);胡隨瑜;;兩種Bp網(wǎng)絡(luò)測(cè)試方法在抑郁癥中醫(yī)證型分類(lèi)中的對(duì)比研究[A];全國(guó)中西醫(yī)結(jié)合基礎(chǔ)理論學(xué)術(shù)研討會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 趙晏彪;BP科學(xué)家獲國(guó)際科學(xué)技術(shù)合作獎(jiǎng)[N];中國(guó)化工報(bào);2007年
2 宗林;中科院BP聯(lián)手推進(jìn)清潔能源商業(yè)化[N];中國(guó)化工報(bào);2007年
3 陳其玨;中科院與BP共建清潔能源商業(yè)化中心[N];上海證券報(bào);2007年
4 鮑勇劍;BP漏油100天危機(jī)啟示錄[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2010年
5 中山大學(xué)附屬第三醫(yī)院風(fēng)濕科 黃建林;美國(guó)醫(yī)生腰間常掛BP機(jī)[N];健康報(bào);2011年
6 本報(bào)記者 王佑;BP:高效與環(huán)保并重[N];第一財(cái)經(jīng)日?qǐng)?bào);2006年
7 記者 郁紅;中科院BP將共建清潔能源商業(yè)化中心[N];中國(guó)化工報(bào);2008年
8 王明毅;中科院與BP攜手推進(jìn)清潔能源商業(yè)化進(jìn)程[N];中國(guó)石油報(bào);2007年
9 本報(bào)記者 詹鈴;BP出售資產(chǎn)追蹤:美企“吃肉” 中企“喝湯”?[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2010年
10 龔月;中石油BP聯(lián)手競(jìng)得伊拉克油田[N];中國(guó)企業(yè)報(bào);2009年
相關(guān)博士學(xué)位論文 前3條
1 孫曉琳;基于Kalman濾波和BP神經(jīng)網(wǎng)絡(luò)的財(cái)務(wù)危機(jī)動(dòng)態(tài)預(yù)警模型研究[D];哈爾濱工業(yè)大學(xué);2010年
2 何毅;基于BP神經(jīng)網(wǎng)絡(luò)電容法刨花含水率測(cè)試儀的研究與開(kāi)發(fā)[D];南京林業(yè)大學(xué);2006年
3 王兟;腦卒中患者體內(nèi)BP抗體水平與大皰性類(lèi)天皰皰患者認(rèn)知功能研究[D];北京協(xié)和醫(yī)學(xué)院;2015年
相關(guān)碩士學(xué)位論文 前10條
1 孫映白;基于BP神經(jīng)網(wǎng)絡(luò)的軟測(cè)量技術(shù)在水松紙透氣度檢測(cè)中的應(yīng)用研究[D];昆明理工大學(xué);2015年
2 段偉超;BP神經(jīng)網(wǎng)絡(luò)修正卡爾曼濾波在邊坡監(jiān)測(cè)中的應(yīng)用[D];鄭州大學(xué);2015年
3 林春;基于BP神經(jīng)絡(luò)的廣東海洋生產(chǎn)總值預(yù)測(cè)研究[D];五邑大學(xué);2015年
4 林琳;基于BP神經(jīng)網(wǎng)絡(luò)的水利工程風(fēng)險(xiǎn)管理研究[D];江西理工大學(xué);2015年
5 王曉菲;BP神經(jīng)網(wǎng)絡(luò)下商業(yè)銀行綠色信貸風(fēng)險(xiǎn)評(píng)估研究[D];天津理工大學(xué);2015年
6 周聰;基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的直接甲醇燃料電池的濃度測(cè)量及控制[D];上海交通大學(xué);2015年
7 卞正國(guó);深空信道中束協(xié)議(BP)的性能分析[D];蘇州大學(xué);2015年
8 巫文蔚;束協(xié)議(BP)在深空鏈路中斷下的性能研究[D];蘇州大學(xué);2015年
9 潘長(zhǎng)城;基于BP神經(jīng)網(wǎng)絡(luò)的化工園區(qū)安全風(fēng)險(xiǎn)水平研究[D];首都經(jīng)濟(jì)貿(mào)易大學(xué);2015年
10 隋惠惠;基于BP神經(jīng)網(wǎng)絡(luò)的短期電力負(fù)荷預(yù)測(cè)的研究[D];哈爾濱工業(yè)大學(xué);2015年
,本文編號(hào):2286909
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2286909.html