基于模糊自整定PID控制算法的毛細管流變儀的研究
[Abstract]:In recent years, polymers and other polymeric materials have developed more and more rapidly, and have been widely used in many fields, such as national defense, chemical industry, automobile manufacturing, and even the aerospace industry, which we are proud of. Therefore, it is necessary to improve the performance of polymer materials. Rheometer is a tool to measure the properties of various materials, and capillary rheometer is one of them. Capillary rheometer is similar to the flow form during processing of many materials. It can not only measure the viscosity of materials, but also study elasticity, so capillary rheometer is widely used in the whole market. With the development of science and technology in our country, the automatic degree and control precision of capillary rheometer are constantly improved, the speed is faster, the sensitivity is higher, the stability is better, the function is stronger. These are the technical requirements of capillary rheometer in the new era. Temperature, as an important factor affecting the accuracy of capillary rheometer, should be paid more attention to. PID control is a kind of temperature control method used in most temperature control at present. Its characteristic is simple structure, easy to understand and easy to realize. And it has the function of eliminating the steady-state error, but the defects of PID control can not meet the requirements of the temperature control of the instrument, so on this basis, A more intelligent temperature control algorithm is proposed and a systematic study is carried out in combination with capillary rheometer. After summarizing various intelligent temperature algorithms and the working process of the whole instrument, a fuzzy self-tuning PID control algorithm is proposed, which can satisfy the requirements of fast response speed, zero overshoot and small steady-state error. Combined with the algorithm, the capillary rheometer is designed, including the realization of the software and the hardware, including the construction of the whole structure, the selection of the main control circuit device, the circuit design and so on. The software design adopts Visual Basic6.0 programming language. Implementation includes experimental control, data query and record keeping, and serial communication functions. Finally, the function of capillary rheometer is verified on the basis of experiments, and the accurate control of temperature is realized.
【學位授予單位】:長春大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH873;TP273
【參考文獻】
相關期刊論文 前10條
1 辜婷;朱大勇;劉典新;魯圣軍;王彩紅;;旋轉流變儀及其在塑料中的研究應用[J];塑料工業(yè);2017年02期
2 肖青剛;秦云川;;流變儀參數優(yōu)化及環(huán)氧樹脂流變影響因素分析[J];印制電路信息;2017年01期
3 郭利進;井海明;宋英利;何西碩;;基于模糊自適應PID的回轉爐溫度控制系統(tǒng)[J];化工自動化及儀表;2016年11期
4 梁娜;;溫度、濕度控制的發(fā)展概況及專利分析[J];機電信息;2015年36期
5 魏瀟瀟;馬鉞;陳帥;吳景輝;;基于模糊專家控制的微孔檢測電壓調節(jié)系統(tǒng)[J];制造業(yè)自動化;2015年18期
6 孫敏;張金鳳;鄭佳晶;;遺傳算法在濕法刻蝕設備溫度PID控制中的應用[J];電子工業(yè)專用設備;2014年01期
7 陳冠雄;楊國強;王亞晶;;電參數檢測裝置的研究[J];自動化技術與應用;2013年10期
8 王碧瓊;陳仕兵;張飄凌;;旋轉流變儀及其技術在聚乙烯中的表征應用研究[J];廣東化工;2013年05期
9 黃之然;劉爽;張強;;基于單片機的伺服電機控制系統(tǒng)的研究[J];無線互聯(lián)科技;2012年12期
10 孫永軍;周茜;趙國強;黃海波;;基于自適應PID控制的Buck變換器設計與實現(xiàn)[J];煤礦機電;2012年05期
相關碩士學位論文 前10條
1 李陽;基于自適應模糊PID控制的多容水箱的液位控制[D];江蘇科技大學;2016年
2 王朋朋;基于模糊PID的烘干機溫度控制系統(tǒng)的設計與實現(xiàn)[D];遼寧工業(yè)大學;2016年
3 溫茹涵;基于STM32的模糊PID溫度控制系統(tǒng)[D];青島大學;2015年
4 張慶宇;基于模糊PID的熱處理爐溫度控制系統(tǒng)的研究[D];東北農業(yè)大學;2015年
5 劉江紅;500T陶瓷板液壓機控制系統(tǒng)的設計與研究[D];遼寧工程技術大學;2015年
6 任可佳;基于自適應的模糊PID的艾薩爐溫度控制研究[D];昆明理工大學;2015年
7 吳淵;基于模糊PID的循環(huán)水溫度控制系統(tǒng)研究[D];電子科技大學;2013年
8 劉君輝;一種新型可調壓力式毛細管流變儀及電磁屏蔽材料流變性能的研究[D];華南理工大學;2013年
9 歐陽磊;基于自整定PID控制器的溫度控制系統(tǒng)研究[D];安徽理工大學;2009年
10 孫國峰;高分子材料流體力學分析儀[D];吉林大學;2008年
,本文編號:2280726
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2280726.html