連續(xù)神經(jīng)網(wǎng)絡(luò)的狀態(tài)估計問題研究
[Abstract]:In recent years, with the rapid development of neural network, its application in engineering has become more and more, but in practical engineering applications, there are always inevitable problems such as vulnerability, nonlinearity, time-delay and so on. The existence of this kind of problem will directly result in the state information of some neurons can be outputted through the network. It can be seen that estimating the state of neurons as accurately as possible has important scientific research value and practical significance. The content of this paper is to model the continuous neural network system, and based on the Lyapunov stability theorem, combining with the linear matrix inequality (Linear Matrix Inequality,LMI) technology, matrix analysis technology, etc. The stability of the system is discussed and the design method of the non-fragile state estimator is verified. Firstly, the stability of continuous neural network systems with time-varying delays is analyzed, and the research method of non-vulnerability state estimators considering additive gain variation is discussed. By using the LMI method, the sufficient conditions for the existence of a non-fragile state estimator, which guarantees the asymptotic stability of the system and satisfies other constraints, are obtained, as well as the gain of the state estimator. The results of the study are analyzed. Secondly, a class of continuous neural network models with additive gain variation and time-varying delay are established to analyze the stability of the system and to design a non-fragile state estimator. The continuous neural network augmented system and its constraint conditions are defined. The Lyapunov function is selected and the sufficient conditions for the asymptotic stability of the system and the existence of the gain of the state estimator are obtained according to its stability theorem. In this case, the design and implementation of the non-vulnerability state estimator is transformed into a feasible solution to solve the corresponding LMI. Thirdly, the stability and non-vulnerability state estimation algorithms of neural networks with time-varying delays are considered. The gain variation of the estimator in the bounded form of multiplicative norm is used to characterize the neuron state dependent nonlinear disturbance by using the Lipschitz condition. The state estimator with non-vulnerability is studied. By using the Lyapunov stability theorem, matrix analysis technique, LMI technique and Leibniz-Newton formula, the sufficient conditions for the existence of non-fragile state estimators and the feasible solutions of the standard LMI problem are obtained. Finally, the stability and non-vulnerability state estimation algorithms for continuous neural networks with noise are studied. Two different functions are used to represent the noise, that is, the noise sequence generated by the system and the observed noise sequence of the system. Based on the above neural network model, a non-vulnerability state estimator with gain variables is designed. By analyzing the stability of dynamic augmentation system with error and H? The performance of the non-fragile state estimator is obtained and the LMI, that needs to be satisfied is transformed into a standard linear matrix inequality (LMI) method to solve the convex optimization problem. An example is given to illustrate the accuracy of the study.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 屈百達(dá);徐培培;;不確定線性時變時滯系統(tǒng)的非脆弱魯棒H_∞控制器設(shè)計[J];計算機(jī)工程與應(yīng)用;2015年10期
2 許研;張煒;;基于噪聲濾波的非線性系統(tǒng)故障診斷方法研究[J];計算機(jī)測量與控制;2014年09期
3 劉國權(quán);周書民;;一類含有時變時滯的不確定中立型Hopfield神經(jīng)網(wǎng)絡(luò)的魯棒穩(wěn)定性判據(jù)[J];自動化學(xué)報;2013年09期
4 尹正男;蘇劍波;高秀行;;保證閉環(huán)系統(tǒng)魯棒穩(wěn)定性的干擾觀測器系統(tǒng)性設(shè)計方法[J];自動化學(xué)報;2012年01期
5 李亞軍;鄧飛其;彭云建;;變時滯模糊隨機(jī)細(xì)胞神經(jīng)網(wǎng)絡(luò)新的魯棒穩(wěn)定性[J];控制與決策;2011年08期
6 褚東升;王紅都;張玲;;帶乘性噪聲系統(tǒng)的最優(yōu)方差約束魯棒狀態(tài)估計算法[J];中國海洋大學(xué)學(xué)報(自然科學(xué)版);2011年04期
7 馬大中;王占山;馮健;;非線性無窮分布時滯系統(tǒng)的非脆弱控制[J];東北大學(xué)學(xué)報(自然科學(xué)版);2009年11期
8 陳云;薛安克;王俊宏;;隨機(jī)時滯系統(tǒng)的時滯相關(guān)無源控制[J];自動化學(xué)報;2009年03期
9 冉華軍;蔡逢煌;王武;楊富文;;具有參數(shù)攝動離散系統(tǒng)的魯棒非脆弱H_∞濾波[J];福州大學(xué)學(xué)報(自然科學(xué)版);2008年03期
10 李旭光;朱新堅;曹廣益;;時滯系統(tǒng)穩(wěn)定性分析:一種積分等式方法[J];控制與決策;2008年04期
相關(guān)博士學(xué)位論文 前2條
1 劉一莎;幾類隨機(jī)非線性時滯系統(tǒng)的可靠控制和濾波[D];大連理工大學(xué);2011年
2 肖伸平;不確定線性時滯系統(tǒng)時滯相關(guān)非脆弱魯棒控制[D];中南大學(xué);2008年
相關(guān)碩士學(xué)位論文 前4條
1 邱彬;時滯復(fù)值神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析及狀態(tài)估計[D];西南大學(xué);2016年
2 段琪輝;時滯神經(jīng)網(wǎng)絡(luò)系統(tǒng)的狀態(tài)估計與濾波[D];浙江大學(xué);2013年
3 王紅;時滯神經(jīng)網(wǎng)絡(luò)系統(tǒng)的穩(wěn)定性及狀態(tài)估計研究[D];大連理工大學(xué);2008年
4 趙睿;捷聯(lián)慣性系統(tǒng)初始對準(zhǔn)研究[D];東南大學(xué);2006年
,本文編號:2279042
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2279042.html