極限學習機隱含層節(jié)點選擇算法研究
[Abstract]:In this paper, a new machine learning method, called extreme learning machine (ELM).), is studied. As a learning algorithm for single hidden layer feedforward neural network (SLFNs), ELM has fast learning speed and good generalization ability. Hidden layer nodes play an important role in ELM algorithm. There are two methods to determine hidden layer nodes: one is pruning method and the other is incremental learning method. In this paper, we introduce two pruning methods, optimal pruning ELM (OP-ELM) and Tikhonov regular OP-ELM (TROP-ELM). Our main work is the incremental learning method of ELM. Incremental learning is to initialize a small network first and then add new nodes to the network until we generate a satisfied network. When a new hidden layer node is added to an existing network, it is often time-consuming to retrain the network. Error minimization extreme learning machine (EM-ELM) is a fast incremental method for calculating output weights. However, due to over-fitting and other reasons, EM-ELM can not always get good generalization ability. Based on the structural risk minimization criterion, we propose an improved EM-ELM method based on regularization, i.e. incremental regularization extreme learning machine (IR-ELM). When we add new hidden layer nodes to the network one by one, IR-ELM can quickly update the output weights, and at the same time ensure that the network has a good generalization ability, thus avoiding the problem mentioned above. At the same time, we propose a IR-ELM lifting method (EIR-ELM), which can select a better one from a set of candidate hidden layer nodes to join the network, further improve the generalization ability of the algorithm and produce a more compact network. For the classification and regression problems, we compare with the original ELM algorithm, OP-ELM and TROP-ELM algorithm and EM-ELM and EEM-ELM algorithm on the benchmark dataset, and verify the effectiveness of IR-ELM and EIR-ELM.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP181
【相似文獻】
相關(guān)期刊論文 前10條
1 張義超;盧英;李煒;;RBF網(wǎng)絡(luò)隱含層節(jié)點的優(yōu)化[J];計算機技術(shù)與發(fā)展;2009年01期
2 翟俊海;李塔;翟夢堯;王熙照;;ELM算法中隨機映射作用的實驗研究[J];計算機工程;2012年20期
3 付英,曾敏,李興源,劉俊勇,王貴德;隱含層對人工神經(jīng)元網(wǎng)絡(luò)電壓安全評估的影響[J];電力系統(tǒng)自動化;1996年11期
4 潘昊;決定神經(jīng)網(wǎng)絡(luò)隱含層單元數(shù)目的自學習算法[J];湖北工學院學報;1998年01期
5 劉國超;賀彥林;朱群雄;;隱含層組合型ELM研究及應(yīng)用[J];計算機與應(yīng)用化學;2013年12期
6 王杰;畢浩洋;;一種基于粒子群優(yōu)化的極限學習機[J];鄭州大學學報(理學版);2013年01期
7 沈花玉;王兆霞;高成耀;秦娟;姚福彬;徐巍;;BP神經(jīng)網(wǎng)絡(luò)隱含層單元數(shù)的確定[J];天津理工大學學報;2008年05期
8 劉艷榮;;用于預(yù)測的BP網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計[J];農(nóng)業(yè)網(wǎng)絡(luò)信息;2007年05期
9 王燦進;孫濤;石寧寧;王銳;王挺峰;王衛(wèi)兵;郭勁;陳娟;;基于雙隱含層BP算法的激光主動成像識別系統(tǒng)[J];光學精密工程;2014年06期
10 葉斌,雷燕;關(guān)于BP網(wǎng)中隱含層層數(shù)及其節(jié)點數(shù)選取方法淺析[J];商丘職業(yè)技術(shù)學院學報;2004年06期
相關(guān)碩士學位論文 前3條
1 萇群康;煙花算法優(yōu)化極限學習機的研究及應(yīng)用[D];鄭州大學;2016年
2 徐志鑫;極限學習機隱含層節(jié)點選擇算法研究[D];浙江大學;2017年
3 哈明光;單隱含層前饋神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)選擇研究[D];河北大學;2014年
,本文編號:2265767
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2265767.html