基于圖形表示方法的蛋白質(zhì)亞細胞定位預(yù)測模型
[Abstract]:As one of the methods of comparative analysis of biological sequences, graphic representation has been widely used in the study of bioinformatics because of its visibility and easy numerical description. The main work of this paper is to propose two new graphical representations and apply them to sequence similarity analysis and subcellular location prediction respectively. Based on the hydrophobic index value of nucleotide triad, amino acid and the iterative function of different parameters, a new graphical representation is proposed, and a numerical characterization is given to quantify the similarity between different sequences. Using this method, the similarity of ND5 protein sequences of nine species and 尾 -globin sequences of 12 species are compared, and their evolutionary trees are constructed by using the distance matrix. The evolutionary tree obtained is consistent with the evolutionary relationship of species. In addition, the correlation coefficient is used to compare the proposed method with the traditional classical algorithm Clustal W and other graphical representation methods and the results of ClustalW. The comparison results show that the proposed method is effective in the study of sequence similarity analysis. Subcellular localization prediction has been a hot topic in bioinformatics. In this paper, we propose a new subcellular location prediction model based on graphical representation and BP neural network. Firstly, the distance matrix between protein sequences is calculated by using a new graphic representation of protein sequences and corresponding numerical characterization, and then introduced into BP neural network to obtain a new subcellular location prediction model. Furthermore, using the constructed prediction model, this paper has carried out experiments on two data sets, ZD98 and CL317, and the overall prediction accuracy on these two data sets is 94.9 and 87.4, respectively. In addition, using the two indexes of individual sensitivity and global prediction accuracy, we compare the prediction results on the same data set ZD98 and CL317 with the subcellular localization prediction method in the previous literature. The results show that the prediction model can effectively predict the subcellular localization of proteins.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:Q811.4;TP183
【相似文獻】
相關(guān)期刊論文 前7條
1 劉連芳;以圖形為基礎(chǔ)的超媒體模型[J];廣西科學(xué);1995年03期
2 華驊;羅代升;楊曉敏;盛曦;周釗;;鼠標點擊的圖形代替快速識別算法[J];四川大學(xué)學(xué)報(自然科學(xué)版);2007年02期
3 王勇超,畢凈,陳偕雄;基于0-1編碼空間的譜系數(shù)圖與K圖的圖形互換[J];浙江大學(xué)學(xué)報(理學(xué)版);2003年06期
4 李睿;唐勝群;;基于Eclipse平臺的本體圖形編輯器的設(shè)計與實現(xiàn)[J];武漢大學(xué)學(xué)報(理學(xué)版);2005年S2期
5 羅明良;;油氣藏開發(fā)管理GIS中的圖形表示技術(shù)[J];科技經(jīng)濟市場;2010年04期
6 劉冰;施洪潔;王澤生;;Eclipse中圖形編輯器的研究[J];科技信息;2009年33期
7 ;[J];;年期
相關(guān)博士學(xué)位論文 前2條
1 袁春欣;核酸序列的圖形表示理論及應(yīng)用[D];大連理工大學(xué);2007年
2 白鳳蘭;生物序列的圖形表示及其應(yīng)用[D];大連理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 徐蘇寧;基于廣義CGR的蛋白圖形表示及其應(yīng)用[D];浙江理工大學(xué);2016年
2 喻道莉;基于圖形表示方法的蛋白質(zhì)亞細胞定位預(yù)測模型[D];浙江理工大學(xué);2016年
3 燕永軍;作業(yè)圖形拓撲關(guān)系識別技術(shù)的研究與開發(fā)[D];西南交通大學(xué);2008年
4 趙慶軍;機械工程圖圖形檢索技術(shù)研究[D];大連理工大學(xué);2004年
5 沈冬冬;曲軸坐標系量化圖形計算機輔助設(shè)計研究[D];河北師范大學(xué);2008年
6 牟敬君;生物序列的圖形表示及相似性分析[D];中國海洋大學(xué);2008年
7 唐曉嬋;DNA序列的圖形表示方法及應(yīng)用[D];蘭州大學(xué);2009年
8 李偉;DNA序列的圖形表示方法研究[D];蘭州大學(xué);2010年
9 于成龍;DNA序列的圖形表示及其相似性分析[D];浙江大學(xué);2006年
10 李丹;基于蛋白質(zhì)圖形表示的膜蛋白跨膜區(qū)預(yù)測[D];浙江理工大學(xué);2013年
,本文編號:2260378
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2260378.html